首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1670篇
  免费   106篇
  国内免费   37篇
  2023年   15篇
  2022年   26篇
  2021年   41篇
  2020年   28篇
  2019年   42篇
  2018年   35篇
  2017年   26篇
  2016年   57篇
  2015年   82篇
  2014年   111篇
  2013年   127篇
  2012年   140篇
  2011年   134篇
  2010年   88篇
  2009年   54篇
  2008年   88篇
  2007年   68篇
  2006年   67篇
  2005年   56篇
  2004年   52篇
  2003年   54篇
  2002年   47篇
  2001年   48篇
  2000年   35篇
  1999年   27篇
  1998年   6篇
  1997年   13篇
  1996年   8篇
  1994年   10篇
  1993年   12篇
  1992年   22篇
  1991年   15篇
  1990年   21篇
  1989年   13篇
  1988年   18篇
  1987年   12篇
  1986年   10篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1981年   7篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1973年   6篇
  1972年   7篇
  1971年   6篇
排序方式: 共有1813条查询结果,搜索用时 15 毫秒
141.
Although gait change is considered a useful indicator of severity in animal models of Parkinson's disease, systematic and extensive gait analysis in animal models of neurological deficits is not well established. The CatWalk-assisted automated gait analysis system provides a comprehensive way to assess a number of dynamic and static gait parameters simultaneously. In this study, we used the Catwalk system to investigate changes in gait parameters in adult rats with unilateral 6-OHDA-induced lesions and the rescue effect of dopaminergic neuron transplantation on gait function. Four weeks after 6-OHDA injection, the intensity and maximal area of contact were significantly decreased in the affected paws and the swing speed significantly decreased in all four paws. The relative distance between the hind paws also increased, suggesting that animals with unilateral 6-OHDA-induced lesions required all four paws to compensate for loss of balance function. At 8 weeks post-transplantation, engrafted dopaminergic neurons expressed tyrosine hydroxylase. In addition, the intensity, contact area, and swing speed of the four limbs increased and the distance between the hind paws decreased. Partial recovery of methamphetamine-induced rotational response was also noted.  相似文献   
142.
3α-Hydroxysteroid dehydrogenase/carbonyl reductase reversely catalyzes the oxidation of androsterone with NAD+ to form androstanedione and NADH. In this study, we investigated the function of active site residues N86, Y155, and K159 in NADH binding and catalysis in the reduction of androstanedione, using site-directed mutagenesis, steady-state kinetics, fluorescence quenching, and anisotropy measurements. The N86A, Y155F, and K159A mutant enzymes decreased the catalytic constant by 37- to 220-fold and increased the dissociation constant by 3- to 75-fold, respectively. Binding of NADH with wild-type and mutant enzymes caused different levels of fluorescence resonance energy transfer, implying a different orientation of nicotinamide ring versus W173. In addition, the enzyme-bound NADH decreased the fluorescence anisotropy value in the order WT > N86A > Y155F > K159A, indicating an increase in the mobility of the bound NADH for the mutants. Data suggest that hydrogen bonding with the hydroxyl group of nicotinamide ribose by K159 and Y155 is important to maintain the orientation of NADH and contributes greatly to the transition-state binding energy to facilitate the catalysis. N86 is important for stabilizing the position of K159. Substitution of alanine for N86 has a minor effect on NADH binding through K159, resulting in a slight increase in the mobility of the bound NADH and decreases in affinity and catalytic constant.  相似文献   
143.
Environmental variables can significantly influence the folding and stability of a protein molecule. In the present study, the biophysical properties of a truncated Bacillus sp. TS-23 α-amylase (BACΔNC) were characterized in detail by glutaraldehyde cross-linking, analytical ultracentrifugation, and various spectroscopic techniques. With cross-linking experiment and analytical ultracentrifuge, we demonstrated that the oligomeric state of BACΔNC in solution is monomeric. Far-UV circular dichroism analysis revealed that the secondary structures of BACΔNC were significantly altered in the presence of various metal ions and SDS, whereas acetone and ethanol had no detrimental effect on folding of the enzyme. BACΔNC was inactive and unstable at extreme pH conditions. Thermal unfolding of the enzyme was found to be highly irreversible. The native enzyme started to unfold beyond ~0.2 M guanidine hydrochloride (GdnHCl) and reached an unfolded intermediate, [GdnHCl]0.5, N–U, at 1.14 M. BACΔNC was active at the concentrations of urea below 6 M, but it experienced an irreversible unfolding by >8 M denaturant. Taken together, this work lays a foundation for the future structural studies with Bacillus sp. TS-23 α-amylase, a typical member of glycoside hydrolases family 13.  相似文献   
144.
Chuang JG  Su SN  Chiang BL  Lee HJ  Chow LP 《Proteomics》2010,10(21):3854-3867
Although cockroaches are known to produce allergens that can cause IgE-mediated hypersensitivity reactions, including perennial rhinitis and asthma, the various cockroach allergens have not yet been fully studied. Many proteins from the German cockroach show high IgE reactivity, but have never been comprehensively characterized. To identify these potential allergens, proteins were separated by 2-DE and IgE-binding proteins were analyzed by nanoLC-MS/MS or N-terminal sequencing analysis. Using a combination of proteomic techniques and bioinformatic allergen database analysis, we identified a total of ten new B. germanica IgE-binding proteins. Of these, aldolase, arginine kinase, enolase, Hsp70, triosephosphate isomerase, and vitellogenin have been reported as allergens in species other than B. germanica. Analysis of the Food Allergy Research and Resource Program allergen database indicated that arginine kinase, enolase, and triosephosphate isomerase showed significant potential cross-reactivity with other related allergens. This study revealed that vitellogenin is an important novel B. germanica allergen. Personalized profiling and reactivity of IgE Abs against the panel of IgE-binding proteins varied between cockroach-allergic individuals. These findings make it possible to monitor the individual IgE reactivity profile of each patient and facilitate personalized immunotherapies for German cockroach allergy disorders.  相似文献   
145.
Determination of the stoichiometry of macromolecular assemblies is fundamental to an understanding of how they function. Many different biophysical methodologies may be used to determine stoichiometry. In the past, both sedimentation equilibrium and sedimentation velocity analytical ultracentrifugation have been employed to determine component stoichiometries. Recently, a method of globally analyzing multisignal sedimentation velocity data was introduced by Schuck and coworkers. This global analysis removes some of the experimental inconveniences and inaccuracies that could occur in the previously used strategies. This method uses spectral differences between the macromolecular components to decompose the well-known c(s) distribution into component distributions ck(s); that is, each component k has its own ck(s) distribution. Integration of these distributions allows the calculation of the populations of each component in cosedimenting complexes, yielding their stoichiometry. In our laboratories, we have used this method extensively to determine the component stoichiometries of several protein-protein complexes involved in cytoskeletal remodeling, sugar metabolism, and host-pathogen interactions. The overall method is described in detail in this work, as are experimental examples and caveats.  相似文献   
146.

Background

Development in systems biology research has accelerated in recent years, and the reconstructions for molecular networks can provide a global view to enable in-depth investigation on numerous system properties in biology. However, we still lack a systematic approach to reconstruct the dynamic protein-protein association networks at different time stages from high-throughput data to further analyze the possible cross-talks among different signaling/regulatory pathways.

Methods

In this study we integrated protein-protein interactions from different databases to construct the rough protein-protein association networks (PPANs) during TNFα-induced inflammation. Next, the gene expression profiles of TNFα-induced HUVEC and a stochastic dynamic model were used to rebuild the significant PPANs at different time stages, reflecting the development and progression of endothelium inflammatory responses. A new cross-talk ranking method was used to evaluate the potential core elements in the related signaling pathways of toll-like receptor 4 (TLR-4) as well as receptors for tumor necrosis factor (TNF-R) and interleukin-1 (IL-1R).

Results

The highly ranked cross-talks which are functionally relevant to the TNFα pathway were identified. A bow-tie structure was extracted from these cross-talk pathways, suggesting the robustness of network structure, the coordination of signal transduction and feedback control for efficient inflammatory responses to different stimuli. Further, several characteristics of signal transduction and feedback control were analyzed.

Conclusions

A systematic approach based on a stochastic dynamic model is proposed to generate insight into the underlying defense mechanisms of inflammation via the construction of corresponding signaling networks upon specific stimuli. In addition, this systematic approach can be applied to other signaling networks under different conditions in different species. The algorithm and method proposed in this study could expedite prospective systems biology research when better experimental techniques for protein expression detection and microarray data with multiple sampling points become available in the future.
  相似文献   
147.

Background  

Heparan sulfate glycosaminoglycans are diverse components of certain proteoglycans and are known to interact with growth factors as a co-receptor necessary to induce signalling and growth factor activity. In this report we characterize heterogeneously glycosylated recombinant human perlecan domain 1 (HSPG2 abbreviated as rhPln.D1) synthesized in either HEK 293 cells or HUVECs by transient gene delivery using either adenoviral or expression plasmid technology.  相似文献   
148.
目的:研究肢体缺血预处理对大鼠肝缺血/再灌注损伤是否具有保护作用。方法:雄性SD大鼠32只,随机分为对照组(S组);缺血/再灌注组(I/R组);经典缺血预处理组(IPC组);肢体缺血预处理组(远端缺血预处理组,RPC组)。S组仅行开腹,不作其他处理;IPC组以肝缺血5min作预处理;RPC组以双后肢缺血5min,反复3次作预处理,2个预处理组及I/R组均行肝缺血1h再灌注3h。取血用于血清谷丙转氨酶(ALT)与血清谷草转氨酶(AST)检测。切取肝组织用于测定湿干比(W/D)、中性粒细胞(PMN)计数及观察显微、超微结构的变化。结果:与I/R组比较,IPC组,RPC组ALT,AST,W/D值,及PMN计数均明显降低(P〈0.01),肝脏的显微及超微结构损伤减轻。结论:肢体缺血预处理对大鼠肝脏I/R损伤有明显的保护作用,强度与经典缺血预处理相当,其机制可能与抑制肝脏炎症反应、减轻肝脏水肿、改善肝组织微循环有关。  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号