首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   91篇
  国内免费   2篇
  2021年   18篇
  2020年   7篇
  2019年   10篇
  2018年   9篇
  2017年   14篇
  2016年   31篇
  2015年   62篇
  2014年   60篇
  2013年   89篇
  2012年   26篇
  2011年   20篇
  2010年   53篇
  2009年   33篇
  2008年   22篇
  2007年   10篇
  2006年   24篇
  2005年   16篇
  2004年   10篇
  2003年   22篇
  2002年   10篇
  2001年   10篇
  2000年   17篇
  1999年   18篇
  1998年   17篇
  1997年   10篇
  1996年   19篇
  1995年   20篇
  1994年   11篇
  1993年   12篇
  1992年   11篇
  1991年   10篇
  1990年   8篇
  1989年   6篇
  1988年   6篇
  1987年   11篇
  1986年   7篇
  1985年   12篇
  1984年   8篇
  1981年   10篇
  1978年   8篇
  1977年   7篇
  1974年   5篇
  1973年   10篇
  1972年   10篇
  1971年   7篇
  1970年   8篇
  1969年   5篇
  1966年   5篇
  1965年   10篇
  1963年   5篇
排序方式: 共有905条查询结果,搜索用时 15 毫秒
151.
Linkage of upstream cell culture with downstream processing and purification is an aspect of Quality by Design crucial for efficient and consistent production of high quality biopharmaceutical proteins. In a previous Plackett‐Burman screening study of parallel bioreactor cultures we evaluated main effects of 11 process variables, such as agitation, sparge rate, feeding regimens, dissolved oxygen set point, inoculation density, supplement addition, temperature, and pH shifts. In this follow‐up study, we observed linkages between cell culture process parameters and downstream capture chromatography performance and subsequent antibody attributes. In depth analysis of the capture chromatography purification of harvested cell culture fluid yielded significant effects of upstream process parameters on host cell protein abundance and behavior. A variety of methods were used to characterize the antibody both after purification and buffer formulation. This analysis provided insight in to the significant impacts of upstream process parameters on aggregate formation, impurities, and protein structure. This report highlights the utility of linkage studies in identifying how changes in upstream parameters can impact downstream critical quality attributes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:163–170, 2017  相似文献   
152.
In the Northern Hemisphere, the surface of south-facing slopes orients toward the sun and thus receives a greater duration and intensity of solar irradiation, resulting in a relatively warmer, drier microclimate and seasonal environmental extremes. This creates potentially detrimental conditions for evergreen plants which must endure the full gamut of conditions. I hypothesize that (1) increased southerly aspect will correlate negatively with evergreen understory plant distributions; (2) derived environmental variables (summer and winter light and heat load) will predict variance in evergreen distributions as well as topographic position (aspect, slope, and elevation) and (3) winter light will best predict evergreen understory plant distributions. In order to test these hypotheses, survey data were collected characterizing 10 evergreen understory herb distributions (presence, abundance, and reproduction) as well as the corresponding topographical information across north- and south-facing slopes in the North Carolina mountains and Georgia piedmont. The best predictive models were selected using AIC, and Bayesian hierarchical generalized linear models were used to estimate the strength of the retained coefficients. As predicted, evergreen understory herbs occurred and reproduced less on south-facing than north-facing slopes, though slope and elevation also had robust predictive power, and both discriminated well between evergreen species. While the landscape variables explained where the plants occurred, winter light and heat load provided the best explanation why they were there. Evergreen plants likely are limited on south-facing slopes by low soil moisture combined with high temperatures in summer and high irradiance combined with lower temperatures in winter. The robust negative response of the understory evergreen herbs to increased winter light also suggested that the winter rather than the summer (or growing season) environment provided the best predictive power for understory evergreen distributions, which has substantive implications for predicting responses to global climate change.  相似文献   
153.
Tributyltin and triphenyltin (TBT and TPT) are biocides that have been used to prevent fouling of boats, preserve wood, kill molluscs, and other uses. Due to observed effects on oysters and snails, their use in boat paints has been banned in many nations. However, use on ships and some uses other than as antifouling paints continue. These uses, the relative persistence of these compounds, their tendency to bioaccumulate, and their toxicity cause lingering concerns about risks to humans and non-human organisms. This paper outlines an integrated assessment of TBT and TPT. Based on prior human health and ecological assessments, it suggests that an integrated assessment that recognized common pathways of transport, fate and exposure, and common modes of action would be more efficient and complete than additional independent assessments. The presentation of risks in an integrated manner could also lead to better decisions by defining the various benefits of any management action.  相似文献   
154.
155.
Discovery and optimization of potency and selectivity of a non-Zn-chelating MMP-13 inhibitor with the aid of protein co-crystal structural information is reported. This inhibitor was observed to have a binding mode distinct from previously published MMP-13 inhibitors. Potency and selectivity were improved by extending the hit structure out from the active site into the S1′ pocket.  相似文献   
156.
Enzymes and other biomolecules are often immobilized in a matrix to improve their stability or to improve their ability to be reused. Performing a polycondensation reaction in the presence of a biomolecule of interest relies on random entrapment events during polymerization and may not ensure efficient, homogeneous, or complete biomolecule encapsulation. To overcome these limitations, we have developed a method of incorporating autosilification activity into proteins without affecting enzymatic functionality. The unmodified R5 silaffin peptide from Cylindrotheca fusiformis is capable of initiating silica polycondensation in vitro at ambient temperatures and pressures in aqueous solution. In this study, translational fusion proteins between R5 and various functional proteins (phosphodiesterase, organophosphate hydrolase, and green fluorescent protein) were produced in Escherichia coli. Each of the fusion proteins initiated silica polycondensation, and enzymatic activity (or fluorescence) was retained in the resulting silica spheres. Under certain circumstances, the enzymatically‐active biosilica displayed improved stability relative to free enzyme at elevated temperatures. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
157.
158.
Mutations in SLC26A4 cause nonsyndromic hearing loss associated with an enlarged vestibular aqueduct (EVA, also known as DFNB4) and Pendred syndrome (PS), the most common type of autosomal-recessive syndromic deafness. In many patients with an EVA/PS phenotype, mutation screening of SLC26A4 fails to identify two disease-causing allele variants. That a sizable fraction of patients carry only one SLC26A4 mutation suggests that EVA/PS is a complex disease involving other genetic factors. Here, we show that mutations in the inwardly rectifying K+ channel gene KCNJ10 are associated with nonsyndromic hearing loss in carriers of SLC26A4 mutations with an EVA/PS phenotype. In probands from two families, we identified double heterozygosity in affected individuals. These persons carried single mutations in both SLC26A4 and KCNJ10. The identified SLC26A4 mutations have been previously implicated in EVA/PS, and the KCNJ10 mutations reduce K+ conductance activity, which is critical for generating and maintaining the endocochlear potential. In addition, we show that haploinsufficiency of Slc26a4 in the Slc26a4+/− mouse mutant results in reduced protein expression of Kcnj10 in the stria vascularis of the inner ear. Our results link KCNJ10 mutations with EVA/PS and provide further support for the model of EVA/PS as a multigenic complex disease.  相似文献   
159.
We report on the development and characterization of automated metal-free multiple-column nanoLC instrumentation for sensitive and high-throughput analysis of phosphopeptides with mass spectrometry. The system employs a multiple-column capillary LC fluidic design developed for high-throughput analysis of peptides (Anal. Chem. 2001, 73, 3011–3021), incorporating modifications to achieve broad and sensitive analysis of phosphopeptides. The integrated nanoLC columns (50 μm i.d. × 30 cm containing 5 μm C18 particles) and the on-line solid phase extraction columns (150 μm i.d. × 4 cm containing 5 μm C18 particles) were connected to automatic switching valves with non-metal chromatographic accessories, and other modifications to avoid the exposure of the analyte to any metal surfaces during handling, separation, and electrospray ionization. The nanoLC developed provided a separation peak capacity of ~250 for phosphopeptides (and ~400 for normal peptides). A detection limit of 0.4 fmol was obtained when a linear ion trap tandem mass spectrometer (Finnegan LTQ) was coupled to a 50-μm i.d. column of the nanoLC. The separation power and sensitivity provided by the nanoLC–LTQ enabled identification of ~4600 phosphopeptide candidates from ~60 μg COS-7 cell tryptic digest followed by IMAC enrichment and ~520 tyrosine phosphopeptides from ~2 mg of human T cells digests followed by phosphotyrosine peptide immunoprecipitation.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号