首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1174篇
  免费   84篇
  2023年   5篇
  2022年   20篇
  2021年   32篇
  2020年   14篇
  2019年   21篇
  2018年   34篇
  2017年   19篇
  2016年   25篇
  2015年   65篇
  2014年   64篇
  2013年   84篇
  2012年   93篇
  2011年   118篇
  2010年   55篇
  2009年   44篇
  2008年   63篇
  2007年   78篇
  2006年   76篇
  2005年   83篇
  2004年   60篇
  2003年   61篇
  2002年   34篇
  2001年   10篇
  2000年   3篇
  1999年   9篇
  1998年   5篇
  1997年   11篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1973年   1篇
  1965年   1篇
  1964年   1篇
  1954年   1篇
  1946年   1篇
  1925年   1篇
排序方式: 共有1258条查询结果,搜索用时 265 毫秒
951.
952.
Too hot for comfort: The heatwaves in Greece in 1987 and 1988   总被引:1,自引:0,他引:1  
The heatwaves that affected Greece in July 1987 and July 1988 are considered in terms of (i) the relative strain index. For different types of activity, and (ii) the discomfort index. Hourly values of air temperature and humidity for Thessaloniki and Athens were used as the data base. Both indices show that in terms of physiological strain and general discomfort, Thessaloniki suffered a little more and a little longer than Athens. We conclude that the relative strain index is probably a useful tool in studies of the adverse effects of humid heatwaves on different sections of a population.  相似文献   
953.
The development of adhesion bonds, either among cells or among cells and components of the extracellular matrix, is a crucial process. These interactions are mediated by some molecules collectively known as adhesion molecules (CAMs). CAMs are ubiquitously expressed proteins playing a central role in controlling cell migration, proliferation, survival, and apoptosis. Besides their key function in physiological maintenance of tissue integrity, CAMs play an eminent role in various pathological processes such as cardiovascular disorders, atherogenesis, atherosclerotic plaque progression and regulation of the inflammatory response. CAMs such as selectins, integrins, and immunoglobulin superfamily take part in interactions between leukocyte and vascular endothelium (leukocyte rolling, arrest, firm adhesion, migration). Experimental data and pathologic observations support the assumption that pathogenic microorganisms attach to vascular endothelial cells or sites of vascular injury initiating intravascular infections. In this review a paradigm focusing on cell adhesion molecules pathophysiology and infective endocarditis development is given.  相似文献   
954.
955.
Emerging clinical evidence suggests that thrombosis in the microvasculature of patients with Coronavirus disease 2019 (COVID-19) plays an essential role in dictating the disease progression. Because of the infectious nature of SARS-CoV-2, patients’ fresh blood samples are limited to access for in vitro experimental investigations. Herein, we employ a novel multiscale and multiphysics computational framework to perform predictive modeling of the pathological thrombus formation in the microvasculature using data from patients with COVID-19. This framework seamlessly integrates the key components in the process of blood clotting, including hemodynamics, transport of coagulation factors and coagulation kinetics, blood cell mechanics and adhesive dynamics, and thus allows us to quantify the contributions of many prothrombotic factors reported in the literature, such as stasis, the derangement in blood coagulation factor levels and activities, inflammatory responses of endothelial cells and leukocytes to the microthrombus formation in COVID-19. Our simulation results show that among the coagulation factors considered, antithrombin and factor V play more prominent roles in promoting thrombosis. Our simulations also suggest that recruitment of WBCs to the endothelial cells exacerbates thrombogenesis and contributes to the blockage of the blood flow. Additionally, we show that the recent identification of flowing blood cell clusters could be a result of detachment of WBCs from thrombogenic sites, which may serve as a nidus for new clot formation. These findings point to potential targets that should be further evaluated, and prioritized in the anti-thrombotic treatment of patients with COVID-19. Altogether, our computational framework provides a powerful tool for quantitative understanding of the mechanism of pathological thrombus formation and offers insights into new therapeutic approaches for treating COVID-19 associated thrombosis.  相似文献   
956.
957.
Emerging SARS-CoV-2 variants are creating major challenges in the ongoing COVID-19 pandemic. Being able to predict mutations that could arise in SARS-CoV-2 leading to increased transmissibility or immune evasion would be extremely valuable in development of broad-acting therapeutics and vaccines, and prioritising viral monitoring and containment. Here we use in vitro evolution to seek mutations in SARS-CoV-2 receptor binding domain (RBD) that would substantially increase binding to ACE2. We find a double mutation, S477N and Q498H, that increases affinity of RBD for ACE2 by 6.5-fold. This affinity gain is largely driven by the Q498H mutation. We determine the structure of the mutant-RBD:ACE2 complex by cryo-electron microscopy to reveal the mechanism for increased affinity. Addition of Q498H to SARS-CoV-2 RBD variants is found to boost binding affinity of the variants for human ACE2 and confer a new ability to bind rat ACE2 with high affinity. Surprisingly however, in the presence of the common N501Y mutation, Q498H inhibits binding, due to a clash between H498 and Y501 side chains. To achieve an intermolecular bonding network, affinity gain and cross-species binding similar to Q498H alone, RBD variants with the N501Y mutation must acquire instead the related Q498R mutation. Thus, SARS-CoV-2 RBD can access large affinity gains and cross-species binding via two alternative mutational routes involving Q498, with route selection determined by whether a variant already has the N501Y mutation. These mutations are now appearing in emerging SARS-CoV-2 variants where they have the potential to influence human-to-human and cross-species transmission.  相似文献   
958.
Information systems (IS) community is increasingly interested in employing neuroscience tools and methods in order to develop new theories concerning Human–computer interaction (HCI) and further understand IS acceptance models. The new field of NeuroIS has been introduced to address these issues. NeuroIS researchers have proposed encephalography (EEG), among other neuroscience instruments, as a valuable usability metric, when used effectively in appropriately designed experiments. Moreover, numerous researchers have suggested that EEG frontal asymmetry may serve as an important metric of user experience. Based on the aforementioned evidence, this study aims to integrate frontal asymmetry with Technology acceptance model (TAM). Particularly, we assumed that frontal asymmetry might predict users’ perceptions regarding Usefulness and Ease of Use. Furthermore, we hypothesized that frontal asymmetry might also affect (influence) users’ Perceived Playfulness. Specifically, 82 (43 females and 39 males) undergraduate students were chosen to use a Computer-Based Assessment (while being connected to the EEG) in the context of an introductory informatics course. Results confirmed our hypothesis as well as points of theory about Information technology (IT) acceptance variables. This is one of the first studies to suggest that frontal asymmetry could serve as a valuable tool for examining IT acceptance constructs and better understanding HCI.  相似文献   
959.
960.
We present a very rare case of a 39 year old patient with Dioctophyma renale depicted as a Bosniak cyst IV of the right kidney who was finally subjected to a robotic assisted radical nephrectomy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号