首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25544篇
  免费   2283篇
  国内免费   9篇
  27836篇
  2024年   33篇
  2023年   127篇
  2022年   317篇
  2021年   613篇
  2020年   376篇
  2019年   436篇
  2018年   501篇
  2017年   471篇
  2016年   768篇
  2015年   1254篇
  2014年   1416篇
  2013年   1624篇
  2012年   2144篇
  2011年   2180篇
  2010年   1397篇
  2009年   1143篇
  2008年   1716篇
  2007年   1611篇
  2006年   1448篇
  2005年   1441篇
  2004年   1442篇
  2003年   1242篇
  2002年   1087篇
  2001年   229篇
  2000年   159篇
  1999年   215篇
  1998年   246篇
  1997年   165篇
  1996年   162篇
  1995年   130篇
  1994年   152篇
  1993年   128篇
  1992年   124篇
  1991年   88篇
  1990年   73篇
  1989年   68篇
  1988年   81篇
  1987年   79篇
  1986年   60篇
  1985年   64篇
  1984年   83篇
  1983年   91篇
  1982年   76篇
  1981年   63篇
  1980年   67篇
  1979年   48篇
  1978年   55篇
  1977年   38篇
  1976年   47篇
  1974年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
932.
Modern methods to develop microbe-based biomass conversion processes require a system-level understanding of the microbes involved. Clostridium species have long been recognized as ideal candidates for processes involving biomass conversion and production of various biofuels and other industrial products. To expand the knowledge base for clostridial species relevant to current biofuel production efforts, we have sequenced the genomes of 20 species spanning multiple genera. The majority of species sequenced fall within the class III cellulosome-encoding Clostridium and the class V saccharolytic Thermoanaerobacteraceae. Species were chosen based on representation in the experimental literature as model organisms, ability to degrade cellulosic biomass either by free enzymes or by cellulosomes, ability to rapidly ferment hexose and pentose sugars to ethanol, and ability to ferment synthesis gas to ethanol. The sequenced strains significantly increase the number of noncommensal/nonpathogenic clostridial species and provide a key foundation for future studies of biomass conversion, cellulosome composition, and clostridial systems biology.  相似文献   
933.
934.
The proteins from the thioredoxin family are crucial actors in redox signaling and the cellular response to oxidative stress. The major intracellular source for oxygen radicals are the components of the respiratory chain in mitochondria. Here, we show that the mitochondrial 2-Cys peroxiredoxin (Prx3) is not only substrate for thioredoxin 2 (Trx2), but can also be reduced by glutaredoxin 2 (Grx2) via the dithiol reaction mechanism. Grx2 reduces Prx3 exhibiting catalytic constants (K(m), 23.8 μmol·liter(-1); V(max), 1.2 μmol·(mg·min)(-1)) similar to Trx2 (K(m), 11.2 μmol·liter(-1); V(max), 1.1 μmol·(mg·min)(-1)). The reduction of the catalytic disulfide of the atypical 2-Cys Prx5 is limited to the Trx system. Silencing the expression of either Trx2 or Grx2 in HeLa cells using specific siRNAs did not change the monomer:dimer ratio of Prx3 detected by a specific 2-Cys Prx redox blot. Only combined silencing of the expression of both proteins led to an accumulation of oxidized protein. We further demonstrate that the distribution of Prx3 in different mouse tissues is either linked to the distribution of Trx2 or Grx2. These results introduce Grx2 as a novel electron donor for Prx3, providing further insights into pivotal cellular redox signaling mechanisms.  相似文献   
935.

Background

Parkinson''s disease (PD) is a progressive neurodegenerative disorder characterized pathologically by the presence in the brain of intracellular protein inclusions highly enriched in aggregated alpha-synuclein (α-Syn). Although it has been established that progression of the disease is accompanied by sustained activation of microglia, the underlying molecules and factors involved in these immune-triggered mechanisms remain largely unexplored. Lately, accumulating evidence has shown the presence of extracellular α-Syn both in its aggregated and monomeric forms in cerebrospinal fluid and blood plasma. However, the effect of extracellular α-Syn on cellular activation and immune mediators, as well as the impact of familial PD-linked α-Syn mutants on this stimulation, are still largely unknown.

Methods and Findings

In this work, we have compared the activation profiles of non-aggregated, extracellular wild-type and PD-linked mutant α-Syn variants on primary glial and microglial cell cultures. After stimulation of cells with α-Syn, we measured the release of Th1- and Th2- type cytokines as well as IP-10/CXCL10, RANTES/CCL5, MCP-1/CCL2 and MIP-1α/CCL3 chemokines. Contrary to what had been observed using cell lines or for the case of aggregated α-Syn, we found strong differences in the immune response generated by wild-type α-Syn and the familial PD mutants (A30P, E46K and A53T).

Conclusions

These findings might contribute to explain the differences in the onset and progression of this highly debilitating disease, which could be of value in the development of rational approaches towards effective control of immune responses that are associated with PD.  相似文献   
936.
Alternariol (AOH) was reported recently to act as a topoisomerase poison. To underline the relevance of topoisomerase targeting for the genotoxic properties of AOH, we addressed the question whether human tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme vital to the repair of covalent DNA-topoisomerase adducts, affects AOH-mediated genotoxicity. The relevance of TDP1 activity on AOH-induced genotoxicity was investigated by the comet assay in human cells overexpressing GFP chimera of TDP1 or the inactive mutant TDP1H263A as well as in cells subjected to siRNA-mediated knock-down of endogenous TDP1. Cells overexpressing TDP1 exhibited significantly less DNA damage after treatment with AOH in comparison to cells expressing the inactive mutant TDP1H263A. In accordance with these results, levels of AOH inducing DNA strand breaks were increased in TDP1-suppressed cells in comparison to cells transfected with control siRNA. The specific topoisomerase poisons camptothecin and etoposide caused comparable effects, underlining that TDP1 plays an important role in the repair of topoisomerase-mediated DNA damage. In summary, the repair enzyme TDP1 was identified as a factor for the modulation of AOH-mediated DNA damage in human cells.  相似文献   
937.
The retinoblastoma (RB) tumor suppressor pathway is disrupted at high frequency in hepatocellular carcinoma. However, the mechanisms through which RB modulates physiological responses in the liver remain poorly defined. Despite the well established role of RB in cell cycle control, the deletion of RB had no impact on the kinetics of cell cycle entry or the restoration of quiescence during the course of liver regeneration. Although these findings indicated compensatory effects from the RB-related proteins p107 and p130, even the dual deletion of RB with p107 or p130 failed to deregulate hepatic proliferation. Furthermore, although these findings suggested a modest role for the RB-pathway in the context of proliferative control, RB loss had striking effects on response to the genotoxic hepatocarcinogen diethylnitrosamine. With diethylnitrosamine, RB deletion resulted in inappropriate cell cycle entry that facilitated secondary genetic damage and further uncoupling of DNA replication with mitotic entry. Analysis of the mechanism underlying the differential impact of RB status on liver biology revealed that, while liver regeneration is associated with the conventional induction of cyclin D1 expression, the RB-dependent cell cycle entry, occurring with diethylnitrosamine treatment, was independent of cyclin D1 levels and associated with the specific induction of E2F1. Combined, these studies demonstrate that RB loss has disparate effects on the response to unique tumorigenic stresses, which is reflective of distinct mechanisms of cell cycle entry.  相似文献   
938.
As a continuation of our efforts to discover and develop apoptosis inducing N-methyl-4-(4-methoxyanilino)quinazolines as novel anticancer agents, we explored substitution at the 5-, 6-, 7-positions of the quinazoline and replacement of the quinazoline by other nitrogen-containing heterocycles. A small group at the 5-position was found to be well tolerated. At the 6-position a small group like an amino was preferred. Substitution at the 7-position was tolerated much less than at the 6-position. Replacing the carbon at the 8-position or both the 5- and 8-positions with nitrogen led to about 10-fold reductions in potency. Replacement of the quinazoline ring with a quinoline, a benzo[d][1,2,3]triazine, or an isoquinoline ring showed that the nitrogen at the 1-position is important for activity, while the carbon at the 2-position can be replaced by a nitrogen and the nitrogen at the 3-position can be replaced by a carbon. Through the SAR study, several 5- or 6-substituted analogs, such as 2a and 2c, were found to have potencies approaching that of lead compound N-(4-methoxyphenyl)-N,2-dimethylquinazolin-4-amine (1g, EP128495, MPC-6827, Azixa®).  相似文献   
939.
Hydrogen peroxide does more than react with the binuclear center of oxidized bovine cytochrome c oxidase and generate the well-characterized "peroxy" and "ferryl" forms. Hydrogen peroxide also inactivates detergent-solubilized cytochrome c oxidase in a time- and concentration-dependent manner. There is a 70-80% decrease of electron-transport activity, peroxidation of bound cardiolipin, modification of two nuclear-encoded subunits (IV and VIIc), and dissociation of approximately 60% of subunits VIa and VIIa. Modification of subunit VIIc and dissociation of subunit VIIa are coupled events that probably are responsible for the inactivation of cytochrome c oxidase. When cytochrome c oxidase is exposed to 500 microM hydrogen peroxide for 30 min at pH 7.4 and room temperature, subunits IV (modified up to 20%) and VIIc (modified up to 70%) each have an increased mass of 16 Da as detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization mass spectrometry. In each case, the increased mass is caused by oxidation of a tryptophan (Trp19 within subunit VIIc and Trp48 within subunit IV), almost certainly due to formation of hydroxytryptophan. We conclude that hydrogen peroxide-induced oxidation of tryptophan and cardiolipin proceeds via the binuclear center since both modifications are prevented if the binuclear center is first blocked with cyanide. Bound cardiolipin and oxidized tryptophans are localized relatively far from the binuclear center (30-60 A); therefore, oxidation probably occurs by migration of a free radical generated at the binuclear center to these distal reaction sites.  相似文献   
940.
The causal agent of rice blast disease, the ascomycete fungus Magnaporthe grisea, infects rice (Oryza sativa) plants by means of specialized infection structures called appressoria, which are formed on the leaf surface and mechanically rupture the cuticle. We have identified a gene, Magnaporthe metallothionein 1 (MMT1), which is highly expressed throughout growth and development by M. grisea and encodes an unusual 22-amino acid metallothionein-like protein containing only six Cys residues. The MMT1-encoded protein shows a very high affinity for zinc and can act as a powerful antioxidant. Targeted gene disruption of MMT1 produced mutants that show accelerated hyphal growth rates and poor sporulation but had no effect on metal tolerance. Mmt1 mutants are incapable of causing plant disease because of an inability to bring about appressorium-mediated cuticle penetration. Mmt1 appears to be distributed in the inner side of the cell wall of the fungus. These findings indicate that Mmt1-like metallothioneins may play a novel role in fungal cell wall biochemistry that is required for fungal virulence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号