首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25271篇
  免费   2256篇
  国内免费   9篇
  27536篇
  2024年   33篇
  2023年   124篇
  2022年   313篇
  2021年   607篇
  2020年   372篇
  2019年   435篇
  2018年   497篇
  2017年   465篇
  2016年   763篇
  2015年   1244篇
  2014年   1407篇
  2013年   1606篇
  2012年   2134篇
  2011年   2165篇
  2010年   1385篇
  2009年   1129篇
  2008年   1710篇
  2007年   1602篇
  2006年   1442篇
  2005年   1435篇
  2004年   1436篇
  2003年   1231篇
  2002年   1079篇
  2001年   222篇
  2000年   154篇
  1999年   208篇
  1998年   243篇
  1997年   163篇
  1996年   162篇
  1995年   129篇
  1994年   150篇
  1993年   125篇
  1992年   120篇
  1991年   85篇
  1990年   68篇
  1989年   65篇
  1988年   74篇
  1987年   73篇
  1986年   53篇
  1985年   63篇
  1984年   77篇
  1983年   85篇
  1982年   74篇
  1981年   63篇
  1980年   64篇
  1979年   46篇
  1978年   51篇
  1977年   36篇
  1976年   43篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
192.
193.
Wild-type Ralstonia eutropha H16 produces polyhydroxybutyrate (PHB) as an intracellular carbon storage material during nutrient stress in the presence of excess carbon. In this study, the excess carbon was redirected in engineered strains from PHB storage to the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can directly substitute for fossil-based fuels and be employed within the current infrastructure. Various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, were employed for the biosynthesis of isobutanol and 3-methyl-1-butanol. Production of these branched-chain alcohols was initiated during nitrogen or phosphorus limitation in the engineered R. eutropha. One mutant strain not only produced over 180?mg/L branched-chain alcohols in flask culture, but also was significantly more tolerant of isobutanol toxicity than wild-type R. eutropha. After the elimination of genes encoding three potential carbon sinks (ilvE, bkdAB, and aceE), the production titer improved to 270?mg/L isobutanol and 40?mg/L 3-methyl-1-butanol. Semicontinuous flask cultivation was utilized to minimize the toxicity caused by isobutanol while supplying cells with sufficient nutrients. Under this semicontinuous flask cultivation, the R. eutropha mutant grew and produced more than 14?g/L branched-chain alcohols over the duration of 50?days. These results demonstrate that R. eutropha carbon flux can be redirected from PHB to branched-chain alcohols and that engineered R. eutropha can be cultivated over prolonged periods of time for product biosynthesis.  相似文献   
194.
The postprandial reduction in blood pressure (BP) is triggered by the interaction of nutrients with the small intestine and associated with an increase in splanchnic blood flow. Gastric distension may attenuate the postprandial fall in BP. The aim of this study was to determine the effects of differences in intragastric volume, including distension at a low (100 ml) volume, on BP and superior mesenteric artery (SMA) blood flow responses to intraduodenal glucose in healthy older subjects. BP and heart rate (HR; automated device), SMA blood flow (Doppler ultrasound), mesenteric vascular resistance (MVR), and plasma norepinephrine of nine male subjects (65-75 yr old) were measured after an overnight fast on 4 separate days in random order. On each day, subjects were intubated with a nasoduodenal catheter, incorporating a duodenal infusion port, and orally with a second catheter, incorporating a barostat bag, positioned in the fundus. Each subject received a 60-min (t = 0-60 min) intraduodenal glucose infusion (3 kcal/min) and gastric distension at a volume of 1) 0 ml (V0), 2) 100 ml (V100), 3) 300 ml (V300), or 4) 500 ml (V500). Systolic BP fell (P < 0.05) during V0, but not during V100, V300, or V500. In contrast, HR (P < 0.01) and SMA blood flow (P < 0.001) increased and MVR decreased (P < 0.05) comparably on all 4 days. Plasma norepinephrine rose (P < 0.01) in response to intraduodenal glucose, with no difference between the four treatments. There was a relationship between the areas under the curve for the change in systolic BP from baseline with intragastric volume (r = 0.60, P < 0.001). In conclusion, low-volume (≤100 ml) gastric distension has the capacity to abolish the fall in BP induced by intraduodenal glucose in healthy older subjects without affecting SMA blood flow or MVR. These observations support the concept that nonnutrient gastric distension prior to a meal has potential therapeutic applications in the management of postprandial hypotension.  相似文献   
195.
In this study the femtosecond near-IR and nanosecond green lasers are used to induce alterations in mitotic chromosomes. The subsequent double-strand break responses are studied. We show that both lasers are capable of creating comparable chromosomal alterations and that a phase paling observed within 1-2 s of laser exposure is associated with an alteration of chromatin as confirmed by serial section electron microscopy, DAPI, γH2AX and phospho-H3 staining. Additionally, the accumulation of dark material observed using phase contrast light microscopy (indicative of a change in refractive index of the chromatin) ~ 34 s post-laser exposure corresponds spatially to the accumulation of Nbs1, Ku and ubiquitin. This study demonstrates that chromosomes selectively altered in mitosis initiate the DNA damage response within 30 s and that the accumulation of proteins are visually represented by phase-dark material at the irradiation site, allowing us to determine the fate of the damage as cells enter G1. These results occur with two widely different laser systems, making this approach to study DNA damage responses in the mitotic phase generally available to many different labs. Additionally, we present a summary of most of the published laser studies on chromosomes in order to provide a general guide of the lasers and operating parameters used by other laboratories.  相似文献   
196.
197.
198.
BACKGROUND: vascular endothelial cell activation and dysfunction are observed in patients with severe heart failure and may contribute to systemic manifestations of this syndrome. It remains unknown whether inflammatory activation of these cells occurs in these patients because of increased circulating proinflammatory mediators. Aim: to determine whether the serum from patients with heart failure possesses a net proinflammatory bioactivity to active proinflammatory pathways in cultured endothelial cells. METHODS: serum was obtained from stable patients with end-stage heart failure undergoing elective cardiac transplantation (Tx) and severely decompensated patients with heart failure requiring emergency left ventricular assist device (LVAD) implantation. Net proinflammatory bioactivity of serum was investigated by monitoring IkappaBalpha degradation and E-selectin expression in cultured human pulmonary artery endothelial cells (HPAEC) following incubation with serum samples. Serum cytokine concentrations were measured by ELISA and neutralizing antibodies were used to determine the role of specific factors in the observed bioactivity. RESULT: serum from both patient groups induced HPAEC IkappaBalpha degradation. Low basal HPAEC E-selectin expression significantly increased following treatment with Tx but not LVAD serum. Serum tumor necrosis factor-alpha (TNF-alpha) and IL-10 concentrations were higher in patients with LVAD than those with Tx, and soluble TNF-alpha receptor expression was high in both groups. Neither TNF-alpha nor IL-10 blocking experiments altered either bioassay result. CONCLUSION: activation of a specific profile of pro- and anti-inflammatory mediators is associated with heart failure resulting in HPAEC nuclear factor (NF)-kappaB activation. However, E-selectin expression is further regulated by unidentified factors. TNF-alpha is upregulated but appears to play no part in NFkappaB activation in these patients. These findings could have important therapeutic implications.  相似文献   
199.
Hereditary nonpolyposis colorectal cancer is caused by germline mutations in DNA mismatch repair genes. The majority of cases are associated with mutations in hMSH2 or hMLH1; however, about 12% of cases are associated with alterations in hMSH6. The hMSH6 protein forms a heterodimer with hMSH2 that is capable of recognizing a DNA mismatch. The heterodimer then utilizes its adenosine nucleotide processing ability in an, as of yet, unclear mechanism to facilitate communication between the mismatch and a distant strand discrimination site. The majority of reported mutations in hMSH6 are deletions or truncations that entirely eliminate the function of the protein; however, nearly a third of the reported variations are missense mutations whose functional significance is unclear. We analyzed seven cancer-associated single amino acid alterations in hMSH6 distributed throughout the functional domains of the protein to determine their effect on the biochemical activity of the hMSH2-hMSH6 heterodimer. Five alterations affect mismatch-stimulated ATP hydrolysis activity providing functional evidence that missense variants of hMSH6 can disrupt mismatch repair function and may contribute to disease. Of the five mutants that affect mismatch-stimulated ATP hydrolysis, only two (R976H and H1248D) affect mismatch recognition. Thus, three of the mutants (G566R, V878A, and D803G) appear to uncouple the mismatch binding and ATP hydrolysis activities of the heterodimer. We also demonstrate that these three mutations alter ATP-dependent conformation changes of hMSH2-hMSH6, suggesting that cancer-associated mutations in hMSH6 can disrupt the intramolecular signaling that coordinates mismatch binding with adenosine nucleotide processing.  相似文献   
200.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号