首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25115篇
  免费   2253篇
  国内免费   9篇
  2024年   27篇
  2023年   111篇
  2022年   199篇
  2021年   607篇
  2020年   372篇
  2019年   435篇
  2018年   497篇
  2017年   465篇
  2016年   763篇
  2015年   1244篇
  2014年   1407篇
  2013年   1604篇
  2012年   2131篇
  2011年   2164篇
  2010年   1385篇
  2009年   1129篇
  2008年   1709篇
  2007年   1601篇
  2006年   1440篇
  2005年   1434篇
  2004年   1435篇
  2003年   1230篇
  2002年   1079篇
  2001年   222篇
  2000年   154篇
  1999年   206篇
  1998年   243篇
  1997年   162篇
  1996年   162篇
  1995年   129篇
  1994年   150篇
  1993年   125篇
  1992年   120篇
  1991年   85篇
  1990年   67篇
  1989年   67篇
  1988年   74篇
  1987年   75篇
  1986年   53篇
  1985年   62篇
  1984年   77篇
  1983年   85篇
  1982年   74篇
  1981年   63篇
  1980年   64篇
  1979年   42篇
  1978年   51篇
  1977年   36篇
  1976年   43篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
992.
The first barrier to infection encountered by foliar pathogens is the host cuticle. To traverse this obstacle, many fungi produce specialized infection cells called appressoria. MST12 is essential for appressorium-mediated penetration and infectious growth by the rice pathogen Magnaporthe grisea. In this study, we have characterized in detail the penetration defects of an mst12 deletion mutant. Appressoria formed by the mst12 mutant developed normal turgor pressure and ultrastructure but failed to form penetration pegs either on cellophane membranes or on plant epidermal cells. Deletion and site-directed mutagenesis analyses indicated that both the homeodomain and zinc finger domains, but not the middle region, of MST12 are essential for appressorial penetration and plant infection. The mst12 mutant appeared to be defective in microtubule reorganization associated with penetration peg formation. In mature appressoria, the mutant lacked vertical microtubules observed in the wild type. The mst12 mutant also failed to elicit localized host defence responses, including papilla formation and autofluorescence. Our data indicate that generation of appressorium turgor pressure and formation of the penetration peg are two independent processes. MST12 may play important roles in regulating penetration peg formation and directing the physical forces exerted by the appressorium turgor in mature appressoria.  相似文献   
993.
The increasing rate of multidrug-resistant tuberculosis has led to more use of second-line antibiotics such as para-aminosalicylic acid (PAS). The mode of action of PAS remains unclear, and mechanisms of resistance to this drug are undefined. We have isolated PAS-resistant transposon mutants of Mycobacterium bovis BCG with insertions in the thymidylate synthase (thyA) gene, a critical determinant of intracellular folate levels. BCG thyA mutants have reduced thymidylate synthase activity and are resistant to known inhibitors of the folate pathway. We also find that mutations in thyA are associated with clinical PAS resistance. We have identified PAS-resistant Mycobacterium tuberculosis isolates from infected patients, which harbour mutations in thyA and show reduced activity of the encoded enzyme. Thus, PAS acts in the folate pathway, and thyA mutations probably represent a mechanism of developing resistance not only to PAS but also to other drugs that target folate metabolism.  相似文献   
994.
The powerful genetics, genomics and microscopy tools available for C. elegans make it well suited to studying how epithelial cells adhere to one another and the extracellular matrix, and how the integrated, simultaneous activities of multiple cell adhesion complexes function to shape an organism. Recent studies using forward and reverse genetics have shed light on how phylogenetically conserved cell adhesion complexes, such as the cadherin/catenin complex, claudins, the Discs large complex and hemidesmosome-like attachment structures, regulate epithelial cell adhesion, providing new insights into conserved cell adhesion mechanisms in higher eukaryotes.  相似文献   
995.
PURPOSE OF REVIEW: The results of a landmark clinical study comparing intensive statin therapy with conventional statin therapy, in patients with acute coronary syndromes (ACS), are reviewed. The mechanisms behind these results are analysed drawing data from vascular and cell biology. RECENT FINDINGS: The Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction (PROVE IT-TIMI 22) study showed that intensive statin therapy with 80 mg of atorvastatin to achieve a low-density lipoprotein cholesterol of 62 mg/dl resulted in a 3.9% absolute and a 16% relative risk reduction in death or major cardiovascular events up to 2 years, compared to 40 mg of pravastatin, in patients with ACS. The results were especially significant as intensive statin therapy resulted in a very early benefit (<30 days) and occurred against a background of percutaneous coronary intervention (69%) for the index admission and high use of medications for secondary prevention. The PROVE IT and the Myocardial Ischaemia Reduction with Aggressive Cholesterol Lowering (MIRACL) C-reactive protein sub-study also showed that atorvastatin (80 mg) resulted in a significant reduction in markers of inflammation, whilst the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) study showed that intensive statin therapy was associated with reduced progression of atherosclerosis compared with conventional doses of statins. SUMMARY: Intensive statin therapy results in a significant early reduction in adverse cardiac events in ACS patients which are sustained over 2 years. The early benefits seen are likely to result from modulation of inflammation, endothelial function and coagulation, i.e. the pleiotropic effects, whereas the greater reduction in low-density lipoprotein cholesterol results in reduced long-term events.  相似文献   
996.
997.
To compare the effects of exercise training and hydrochlorothiazide on left ventricular (LV) geometry and mass, blood pressure (BP), and hyperinsulinemia in older hypertensive adults, we studied 28 patients randomized either to a group (age 66.4 +/- 1.3 yr; n = 16) that exercised or to a group (age 65.3 +/- 1.2 yr; n = 12) that received hydrochlorothiazide for 6 mo. Endurance exercise training induced a 15% increase in peak aerobic power. The reduction in systolic BP was twofold greater with thiazide than with exercise (26.6 +/- 12.2 vs. 11.5 +/- 10.9 mmHg). Exercise and thiazide reduced LV wall thickness, LV mass index (14% in each group), and the LV wall thickness-to-radius ratio (h/r) similarly (exercise: before 0.48 +/- 0.2, after 0.42 +/- 0.01; thiazide: before 0.47 +/- 0.04, after 0.40 +/- 0.04; P = 0.017). The reductions in systolic BP and h/r were correlated in the exercise group (r = 0.70, P = 0.005) but not in the thiazide group. Exercise training reduced glucose-stimulated hyperinsulinemia (before: 13.65 +/- 2.6 vs. 9.84 +/- 1.5 mU.ml(-1).min; P = 0.04) and insulin resistance. Thiazide did not affect plasma insulin levels. The results suggest that although exercise is less effective in reducing systolic BP than thiazide, it can induce regression of LV hypertrophy similar in magnitude to thiazide. Unlike hydrochlorothiazide, exercise training can improve insulin resistance and aerobic capacity in older hypertensive people.  相似文献   
998.
In vitro experimental models designed to study the effects of hypoxia and ischemia typically employ oxygen-depleted media and/or hypoxic chambers. These approaches, however, allow for metabolites to diffuse away into a large volume and may not replicate the high local concentrations that occur in ischemic myocardium in vivo. We describe herein a novel and simple method for creating regional hypoxic and ischemic conditions in neonatal rat cardiac myocyte monolayers. This method consists of creating a localized diffusion barrier by placing a glass coverslip over a portion of the monolayer. The coverslip restricts covered myocytes to a thin film of media while leaving uncovered myocytes free to access the surrounding bulk media volume. Myocytes under the coverslip undergo marked morphology changes over time as assessed by video microscopy. Fluorescence microscopy shows that these changes are accompanied by alterations in mitochondrial membrane potential and plasma membrane dynamics and eventually result in myocyte death. We also show that the metabolic activity of myocytes drives cell necrosis under the coverslip. In addition, the intracellular pH of synchronously contracting myocytes under the coverslip drops rapidly, which further implicates metabolic activity in regulating cell death under the coverslip. In contrast with existing models of hypoxia/ischemia, this technique provides a simple and effective way to create hypoxic/ischemic conditions in vitro. Moreover, we conclude that myocyte death is hastened by the combination of hypoxia, metabolites, and acidosis and is facilitated by a reduction in media volume, which may better represent ischemic conditions in vivo.  相似文献   
999.
We describe a three-dimensional magnetic twisting device that is useful in characterizing the mechanical properties of cells. With the use of three pairs of orthogonally aligned coils, oscillatory mechanical torque was applied to magnetic beads about any chosen axis. Frequencies up to 1 kHz could be attained. Cell deformation was measured in response to torque applied via an RGD-coated, surface-bound magnetic bead. In both unpatterned and micropatterned elongated cells on extracellular matrix, the mechanical stiffness transverse to the long axis of the cell was less than half that parallel to the long axis. Elongated cells on poly-L-lysine lost stress fibers and exhibited little mechanical anisotropy; disrupting the actin cytoskeleton or decreasing cytoskeletal tension substantially decreased the anisotropy. These results suggest that mechanical anisotropy originates from intrinsic cytoskeletal tension within the stress fibers. Deformation patterns of the cytoskeleton and the nucleolus were sensitive to loading direction, suggesting anisotropic mechanical signaling. This technology may be useful for elucidating the structural basis of mechanotransduction. cytoskeleton; prestress; stress fibers; mechanotransduction; mechanical deformation  相似文献   
1000.
Platelet endothelial cell adhesion molecule (PECAM-1), a transmembrane glycoprotein, has been implicated in angiogenesis, with recent evidence indicating the involvement of PECAM-1 in endothelial cell motility. The cytoplasmic domain of PECAM-1 contains two tyrosine residues, Y663 and Y686, that each fall within an immunoreceptor tyrosine-based inhibitory motif (ITIM). When phosphorylated, these residues together mediate the binding of the protein tyrosine phosphatase SHP-2. Because SHP-2 has been shown to be involved in the turnover of focal adhesions, a phenomenon required for efficient cell motility, the association of this phosphatase with PECAM-1 via its ITIMs may represent a mechanism by which PECAM-1 might facilitate cell migration. Studies were therefore done with cell transfectants expressing wild-type PECAM or mutant PECAM-1 in which residues Y663 and Y686 were mutated. These mutations eliminated PECAM-1 tyrosine phosphorylation and the association of PECAM-1 with SHP-2 but did not impair the ability of the molecule to localize at intercellular junctions or to bind homophilically. However, in vitro cell motility and tube formation stimulated by the expression of wild-type PECAM-1 were abrogated by the mutation of these tyrosine residues. Importantly, during wound-induced migration, the number of focal adhesions as well as the level of tyrosine phosphorylated paxillin detected in cells expressing wild-type PECAM-1 were markedly reduced compared with control cells or transfectants with mutant PECAM-1. These data suggest that, in vivo, the binding of SHP-2 to PECAM-1, via PECAM-1’s ITIM domains, promotes the turnover of focal adhesions and, hence, endothelial cell motility. platelet endothelial cell adhesion molecule-1; endothelial cells; angiogenesis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号