首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25252篇
  免费   2253篇
  国内免费   9篇
  2024年   33篇
  2023年   124篇
  2022年   314篇
  2021年   608篇
  2020年   372篇
  2019年   435篇
  2018年   497篇
  2017年   466篇
  2016年   764篇
  2015年   1246篇
  2014年   1407篇
  2013年   1604篇
  2012年   2133篇
  2011年   2164篇
  2010年   1385篇
  2009年   1129篇
  2008年   1709篇
  2007年   1601篇
  2006年   1440篇
  2005年   1434篇
  2004年   1435篇
  2003年   1230篇
  2002年   1079篇
  2001年   222篇
  2000年   154篇
  1999年   206篇
  1998年   243篇
  1997年   162篇
  1996年   162篇
  1995年   129篇
  1994年   150篇
  1993年   125篇
  1992年   120篇
  1991年   85篇
  1990年   67篇
  1989年   65篇
  1988年   74篇
  1987年   73篇
  1986年   53篇
  1985年   62篇
  1984年   77篇
  1983年   85篇
  1982年   74篇
  1981年   63篇
  1980年   64篇
  1979年   42篇
  1978年   51篇
  1977年   36篇
  1976年   43篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We describe a three-dimensional magnetic twisting device that is useful in characterizing the mechanical properties of cells. With the use of three pairs of orthogonally aligned coils, oscillatory mechanical torque was applied to magnetic beads about any chosen axis. Frequencies up to 1 kHz could be attained. Cell deformation was measured in response to torque applied via an RGD-coated, surface-bound magnetic bead. In both unpatterned and micropatterned elongated cells on extracellular matrix, the mechanical stiffness transverse to the long axis of the cell was less than half that parallel to the long axis. Elongated cells on poly-L-lysine lost stress fibers and exhibited little mechanical anisotropy; disrupting the actin cytoskeleton or decreasing cytoskeletal tension substantially decreased the anisotropy. These results suggest that mechanical anisotropy originates from intrinsic cytoskeletal tension within the stress fibers. Deformation patterns of the cytoskeleton and the nucleolus were sensitive to loading direction, suggesting anisotropic mechanical signaling. This technology may be useful for elucidating the structural basis of mechanotransduction. cytoskeleton; prestress; stress fibers; mechanotransduction; mechanical deformation  相似文献   
992.
Platelet endothelial cell adhesion molecule (PECAM-1), a transmembrane glycoprotein, has been implicated in angiogenesis, with recent evidence indicating the involvement of PECAM-1 in endothelial cell motility. The cytoplasmic domain of PECAM-1 contains two tyrosine residues, Y663 and Y686, that each fall within an immunoreceptor tyrosine-based inhibitory motif (ITIM). When phosphorylated, these residues together mediate the binding of the protein tyrosine phosphatase SHP-2. Because SHP-2 has been shown to be involved in the turnover of focal adhesions, a phenomenon required for efficient cell motility, the association of this phosphatase with PECAM-1 via its ITIMs may represent a mechanism by which PECAM-1 might facilitate cell migration. Studies were therefore done with cell transfectants expressing wild-type PECAM or mutant PECAM-1 in which residues Y663 and Y686 were mutated. These mutations eliminated PECAM-1 tyrosine phosphorylation and the association of PECAM-1 with SHP-2 but did not impair the ability of the molecule to localize at intercellular junctions or to bind homophilically. However, in vitro cell motility and tube formation stimulated by the expression of wild-type PECAM-1 were abrogated by the mutation of these tyrosine residues. Importantly, during wound-induced migration, the number of focal adhesions as well as the level of tyrosine phosphorylated paxillin detected in cells expressing wild-type PECAM-1 were markedly reduced compared with control cells or transfectants with mutant PECAM-1. These data suggest that, in vivo, the binding of SHP-2 to PECAM-1, via PECAM-1’s ITIM domains, promotes the turnover of focal adhesions and, hence, endothelial cell motility. platelet endothelial cell adhesion molecule-1; endothelial cells; angiogenesis  相似文献   
993.
Wound healing involves multiple cell signaling pathways, including those regulating cell-extracellular matrix adhesion. Previous work demonstrated that arachidonate oxidation to leukotriene B4 (LTB4) by 5-lipoxygenase (5-LOX) signals fibroblast spreading on fibronectin, whereas cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E2 (PGE2) formation facilitates subsequent cell migration. We investigated arachidonate metabolite signaling in wound closure of perturbed NIH/3T3 fibroblast monolayers. We found that during initial stages of wound closure (0–120 min), all wound margin cells spread into the wound gap perpendicularly to the wound long axis. At regular intervals, between 120 and 300 min, some cells elongated to project across the wound and meet cells from the opposite margin, forming distinct cell bridges spanning the wound that act as foci for later wound-directed cell migration and resulting closure. 5-LOX inhibition by AA861 demonstrated a required LTB4 signal for initial marginal cell spreading and bridge formation, both of which must precede wound-directed cell migration. 5-LOX inhibition effects were reversible by exogenous LTB4. Conversely, COX inhibition by indomethacin reduced directed migration into the wound but enhanced early cell spreading and bridge formation. Exogenous PGE2 reversed this effect and increased cell migration into the wound. The differential effects of arachidonic acid metabolites produced by LOX and COX were further confirmed with NIH/3T3 fibroblast cell lines constitutively over- and underexpressing the 5-LOX and COX-2 enzymes. These data suggest that two competing oxidative enzymes in arachidonate metabolism, LOX and COX, differentially regulate sequential aspects of fibroblast wound closure in vitro. leukotriene B4; prostaglandin E2; spreading; migration; bridges  相似文献   
994.
Chronic beta-adrenoreceptor (beta-AR) activation increases left ventricular (LV) cavity size by promoting a rightward shift in LV diastolic pressure-volume (P-V) relations in association with increases in low-tensile strength myocardial (non-cross-linked) collagen concentrations. Because diastolic P-V relations are determined by chamber remodeling as well as by myocardial material properties (indexed by myocardial stiffness), both of which are associated with modifications in myocardial collagen cross-linking, we evaluated whether chamber remodeling or alterations in myocardial material properties govern beta-AR-mediated modifications in diastolic P-V relations. The effects of chronic administration of isoproterenol (Iso; 0.04 mg.kg(-1).day(-1) from 12 to 19 mo of age) to spontaneously hypertensive rats (SHRs) on LV cavity dimensions, LV diastolic P-V relations, myocardial collagen characteristics, myocardial stiffness constants [e.g., the slope of the LV diastolic stress-strain relation (k)], and LV chamber and myocardial systolic function were assessed. SHRs at 19 mo of age had normal LV diastolic P-V relations, marked myocardial fibrosis (using a pathological score), increased myocardial cross-linked (insoluble to cyanogen bromide digestion) type I and type III collagen concentrations, and enhanced myocardial k values. Iso administration to SHRs resulted in enlarged LV cavity dimensions mediated by a rightward shift in LV diastolic P-V relations, increased volume intercept of the LV diastolic P-V relation, decreased LV relative wall thickness despite a tendency to augment LV hypertrophy, and increased non-cross-linked type I and type III myocardial collagen concentrations. Iso administration resulted in reduced pump function without modification of intrinsic myocardial systolic function. However, despite increasing myocardial non-cross-linked concentrations, Iso failed to alter myocardial k in SHRs. These results suggest that beta-AR-mediated rightward shifts in LV diastolic P-V relations, which induce decreased pump function, are mediated by chamber remodeling but not by modifications in myocardial material properties.  相似文献   
995.
A Cl current activated by extracellular acidification, ICl(pHac), has been characterized in various mammalian cell types. Many of the properties of ICl(pHac) are similar to those of the cell swelling-activated Cl current ICl(swell): ion selectivity (I > Br > Cl > F), pharmacology [ICl(pHac) is inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 1,9-dideoxyforskolin (DDFSK), diphenylamine-2-carboxylic acid (DPC), and niflumic acid], lack of dependence on intra- or extracellular Ca2+, and presence in all cell types tested. ICl(pHac) differs from ICl(swell) in three aspects: 1) its rate of activation and inactivation is very much more rapid, currents reaching a maximum in seconds rather than minutes; 2) it exhibits a slow voltage-dependent activation in contrast to the fast voltage-dependent activation and time- and voltage-dependent inactivation observed for ICl(swell); and 3) it shows a more pronounced outward rectification. Despite these differences, study of the transition between the two currents strongly suggests that ICl(swell) and ICl(pHac) are related and that extracellular acidification reflects a novel stimulus for activating ICl(swell) that, additionally, alters the biophysical properties of the channel. cell swelling-activated chloride current; patch clamp; pH  相似文献   
996.
Thirteen clinical isolates of Escherichia coli resistant to ceftazidime that possessed an AmpC and other (beta-lactamases were identified. The effectiveness of different formulations of piperacillin/tazobactam to other beta-lactams was compared. Antibiotic susceptibility testing, polymerase chain reaction, amplification of blaTEM, blaSHV and blaAmpC, and enzyme-linked immunosorbent assays to identify AmpC beta-lactamases were performed. Hydrolysis rates were obtained and residual enzymatic activity was determined. Cefepime and ertapenem were more active than piperacillin/tazobactam. In contrast, increasing the relative proportion of tazobactam improved susceptibility testing. Twenty micromolar tazobactam inhibited total beta-lactamase activity (as measured by nitrocefin hydrolysis rates) by greater than 75% against all isolates tested: in 11 of 13 E. coli isolates, total beta-lactamase activity was inhibited by 90%. The observed differences between MIC determinations and susceptibility to enzymatic inactivation by tazobactam against E. coli containing AmpC and other -lactamases may be due to the final tazobactam concentration achieved in the periplasmic space. Factors determining this are critical considerations in assessing beta-lactamase inhibitor potency.  相似文献   
997.
Truitt CL  Paré PW 《Planta》2004,218(6):999-1007
Volicitin (N-[17-hydroxylinolenoyl]-l glutamine) present in the regurgitant of beet armyworm (Spodoptera exigua) activates the emissions of volatile organic compounds (VOCs) when in contact with damaged corn (Zea mays L.) leaves. VOC emission in turn serves as a signaling defense for the plant by attracting female parasitic wasps that prey on herbivore larvae. Chemical tracking of volicitin within plants has yet to be reported. Here we present biochemical data that beet armyworm regurgitant serves as a vector for the introduction of volicitin to the site of leaf damage under natural feeding conditions. Corn seedlings were 14CO2-labeled in situ, and beet armyworm larvae were allowed to feed on the labeled leaves. Herbivore oral secretions collected from late-third-instar larvae contained approximately 120 pmol volicitin (0.05 nCi pmol–1) per larva. When radiochemically labeled larvae were placed on unlabeled leaves, the amount of volicitin introduced to the damaged site was approximately 5.0 nCi (calc. 100 pmol/larvae). The mobility of volicitin in leaves was examined by allowing radiolabeled beet armyworms to feed on unlabeled plants. In such tracking experiments, radioactivity was not detected in the upper leaves; however, the exogenous application of 5 nCi of [U-14C]sucrose to the lower leaf did result in subsequent radioactivity being detected in the upper portion of the plant. The detection of labeled sucrose with the same radioactivity as that of administered volicitin indicated that volicitin was not readily transported to undamaged leaves and that volicitin may not directly serve as a mobile messenger in triggering the emissions of VOCs systemically.Abbreviations BAW Beet armyworm (Spodoptera exigua) - dpm Disintegrations per minute - FAA Fatty acid amide - JA Jasmonic acid - VOC Volatile organic compound  相似文献   
998.
Grefen C  Harter K 《Planta》2004,219(5):733-742
Two-component systems have emerged as important sensing/response mechanisms in higher plants. They are composed of hybrid histidine kinases, histidine-containing phosphotransfer domain proteins and response regulators that are biochemically linked by His-to-Asp phosphorelay. In plants two-component systems play a major role in cytokinin perception and signalling and contribute to ethylene signal transduction and osmosensing. Furthermore, developmental processes like megagametogenesis in Arabidopsis thaliana and flowering promotion in rice (Oryza sativa) involve elements of two-component systems. Two-component-like elements also function as components of the Arabidopsis circadian clock. Because of the molecular mode of signalling, plant two-component systems also appear to serve as intensive cross talk and signal integration machinery. In this review we summarize the present knowledge about the principles and functions of two-component systems in higher plants and address several critical points with respect to cross talk, signal integration and specificity.Abbreviations AHK Arabidopsis histidine kinase - AHP Arabidopsis histidine-containing phosphotransfer domain protein - APRR Arabidopsis pseudo response regulator - ARR Arabidopsis response regulator - CCT CONSTANS CONSTANS-like TOC1 - CKI Cytokinin insensitive - CRE Cytokinin response - CTR Constitutive triple response - Ehd Early heading date - EIN Ethylene insensitive - ERS Ethylene response sensor - ETR Ethylene resistant - GARP-motif Found in Golden2 of maize, Arabidopsis B-type response regulators and Chlamydomonas Psr1 - HPt Histidine-containing phosphotransfer domain - NLS Nuclear localization signal - phyB Phytochrome B - TCS Two-component signalling - TOC Timing of CAB (chlorophyll a/b-binding protein) expression - WOL Wooden leg  相似文献   
999.
1000.
Potten CS 《Radiation research》2004,161(2):123-136
Epithelial tissues are highly polarized, with the proliferative compartment subdivided into units of proliferation in many instances. My interests have been in trying to understand how many cellular constituents exist, what their function is, and what the intercommunicants are that ensure appropriate steady-state cell replacement rates. Radiation has proven to be a valuable tool to induce cell death, reproductive sterilization, and regenerative proliferation in these systems, the responses to which can provide information on the number of regenerative cells (a function associated with stem cells). Such studies have helped define the epidermal proliferative units and the structurally similar units on the dorsal surface of the tongue. The radiation responses considered in conjunction with a wide range of cell kinetic, lineage tracking and somatic mutation studies together with complex mathematical modeling provide insights into the functioning of the proliferative units (crypts) of the small intestine. Comparative studies have then been undertaken with the crypts in the large bowel. In the small intestine, in which cancer rarely develops, various protective mechanisms have evolved to ensure the genetic integrity of the stem cell compartment. Stem cells in the small intestinal crypts are intolerant of genotoxic damage (including that induced by very low doses of radiation); they do not undergo cell cycle arrest and repair but commit an altruistic TP53-dependent cell suicide (apoptosis). This process is compromised in the large bowel by BCL2 expression. Recent studies have suggested a second genome protection mechanism operating in the stem cells of the small intestinal crypts that may also have a TP53 dependence. Such studies have allowed the cell lineages and genome protection mechanisms operating the small intestinal crypts to be defined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号