首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26006篇
  免费   2335篇
  国内免费   9篇
  2023年   113篇
  2022年   190篇
  2021年   615篇
  2020年   376篇
  2019年   442篇
  2018年   508篇
  2017年   476篇
  2016年   775篇
  2015年   1265篇
  2014年   1431篇
  2013年   1635篇
  2012年   2184篇
  2011年   2203篇
  2010年   1408篇
  2009年   1145篇
  2008年   1742篇
  2007年   1631篇
  2006年   1466篇
  2005年   1458篇
  2004年   1464篇
  2003年   1264篇
  2002年   1117篇
  2001年   249篇
  2000年   179篇
  1999年   229篇
  1998年   259篇
  1997年   174篇
  1996年   174篇
  1995年   142篇
  1994年   162篇
  1993年   133篇
  1992年   136篇
  1991年   103篇
  1990年   83篇
  1989年   83篇
  1988年   91篇
  1987年   87篇
  1986年   71篇
  1985年   88篇
  1984年   88篇
  1983年   93篇
  1982年   83篇
  1981年   72篇
  1980年   74篇
  1979年   49篇
  1978年   54篇
  1977年   46篇
  1976年   48篇
  1974年   35篇
  1971年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Like the cyst walls of other protists, the spore coat of Dictyostelium discoideum is formed de novo to protect the enclosed dormant cell from stress. Spore coat assembly is initiated by exocytosis of protein and polysaccharide precursors at the cell surface, followed by the infusion of nascent cellulose fibrils, resulting in an asymmetrical trilaminar sandwich with cellulose filling the middle layer. A molecular complex consisting of cellulose and two proteins, SP85 and SP65, is associated with the inner and middle layers and is required for proper organization of distinct proteins in the outer layer. Here we show that, unlike SP85 and other protein precursors, which are stored in prespore vesicles, SP65 is, like cellulose, synthesized just in time. By tagging the SP65 locus with green fluorescent protein, we find that SP65 is delivered to the cell surface via largely distinct vesicles, suggesting that separate delivery of components of the cellulose-SP85-SP65 complex regulates its formation at the cell surface. In support of previous in vivo studies, recombinant SP65 and SP85 are shown to interact directly. In addition, truncation of SP65 causes a defect of the outer layer permeability barrier as seen previously for SP85 mutants. These observations suggest that assembly of the cellulose-SP85-SP65 triad at the cell surface is biosynthetically regulated both temporally and spatially and that the complex contributes an essential function to outer layer architecture and function.  相似文献   
952.
953.
954.
955.
IFNs have pleiotropic antitumor mechanisms of action. The purpose of this study was to further investigate the effects of IFN-beta on the vasculature of human xenografts in immunodeficient mice. We found that continuous, systemic IFN-beta delivery, established with liver-targeted adeno-associated virus vectors, led to sustained morphologic and functional changes of the tumor vasculature that were consistent with vessel maturation. These changes included increased smooth muscle cell coverage of tumor vessels, improved intratumoral blood flow, and decreased vessel permeability, tumor interstitial pressure, and intratumoral hypoxia. Although these changes in the tumor vasculature resulted in more efficient tumor perfusion, further tumor growth was restricted, as the mature vasculature seemed to be unable to expand to support further tumor growth. In addition, maturation of the intratumoral vasculature resulted in increased intratumoral penetration of systemically administered chemotherapy. Finally, molecular analysis revealed increased expression by treated tumors of angiopoietin-1, a cytokine known to promote vessel stabilization. Induction of angiopoietin-1 expression in response to IFN-beta was broadly observed in different tumor lines but not in those with defects in IFN signaling. In addition, IFN-beta-mediated vascular changes were prevented when angiopoietin signaling was blocked with a decoy receptor. Thus, we have identified an alternative approach for achieving sustained vascular remodeling-continuous delivery of IFN-beta. In addition to restricting tumor growth by inhibiting further angiogenesis, maturation of the tumor vasculature also improved the efficiency of delivery of adjuvant therapy. These results have significant implications for the planning of combination anticancer therapy.  相似文献   
956.
957.
Tomographic phase microscopy   总被引:1,自引:0,他引:1  
We report a technique for quantitative three-dimensional (3D) mapping of refractive index in live cells and tissues using a phase-shifting laser interferometric microscope with variable illumination angle. We demonstrate tomographic imaging of cells and multicellular organisms, and time-dependent changes in cell structure. Our results will permit quantitative characterization of specimen-induced aberrations in high-resolution microscopy and have multiple applications in tissue light scattering.  相似文献   
958.
959.
The antitumor fungal metabolite terrequinone A, identified in extracts of Aspergillus sp., is biosynthesized by the five-gene cluster tdiA-tdiE. In this work, we have overproduced all five proteins (TdiA-TdiE) in the bacterial host Escherichia coli, fully reconstituting the biosynthesis of terrequinone A. This pathway involves aminotransferase activity, head-to-tail dimerization and bisprenylation of the scaffold to yield the benzoquinone natural product. We have established that TdiD is a pyridoxal-5'-phosphate-dependent L-tryptophan aminotransferase that generates indolepyruvate for an unusual nonoxidative coupling by the tridomain nonribosomal peptide synthetase TdiA. TdiC, an NADH-dependent quinone reductase, generates the nucleophilic hydroquinone for two distinct rounds of prenylation by the single prenyltransferase TdiB. TdiE is required to shunt the benzoquinone away from an off-pathway monoprenylated species by an as yet unknown mechanism. Overall, we have biochemically characterized the complete biosynthetic pathway to terrequinone A, highlighting the nonoxidative dimerization pathway and the unique asymmetric prenylation involved in its maturation.  相似文献   
960.
Acquisition of partially protective immunity is a dominant feature of the epidemiology of malaria among exposed individuals. The processes that determine the acquisition of immunity to clinical disease and to asymptomatic carriage of malaria parasites are poorly understood, in part because of a lack of validated immunological markers of protection. Using mathematical models, we seek to better understand the processes that determine observed epidemiological patterns. We have developed an age-structured mathematical model of malaria transmission in which acquired immunity can act in three ways (“immunity functions”): reducing the probability of clinical disease, speeding the clearance of parasites, and increasing tolerance to subpatent infections. Each immunity function was allowed to vary in efficacy depending on both age and malaria transmission intensity. The results were compared to age patterns of parasite prevalence and clinical disease in endemic settings in northeastern Tanzania and The Gambia. Two types of immune function were required to reproduce the epidemiological age-prevalence curves seen in the empirical data; a form of clinical immunity that reduces susceptibility to clinical disease and develops with age and exposure (with half-life of the order of five years or more) and a form of anti-parasite immunity which results in more rapid clearance of parasitaemia, is acquired later in life and is longer lasting (half-life of >20 y). The development of anti-parasite immunity better reproduced observed epidemiological patterns if it was dominated by age-dependent physiological processes rather than by the magnitude of exposure (provided some exposure occurs). Tolerance to subpatent infections was not required to explain the empirical data. The model comprising immunity to clinical disease which develops early in life and is exposure-dependent, and anti-parasite immunity which develops later in life and is not dependent on the magnitude of exposure, appears to best reproduce the pattern of parasite prevalence and clinical disease by age in different malaria transmission settings. Understanding the effector mechanisms underlying these two immune functions will assist in the design of transmission-reducing interventions against malaria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号