首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26025篇
  免费   2335篇
  国内免费   9篇
  2023年   113篇
  2022年   209篇
  2021年   615篇
  2020年   376篇
  2019年   442篇
  2018年   508篇
  2017年   476篇
  2016年   775篇
  2015年   1265篇
  2014年   1431篇
  2013年   1635篇
  2012年   2184篇
  2011年   2203篇
  2010年   1408篇
  2009年   1145篇
  2008年   1742篇
  2007年   1631篇
  2006年   1466篇
  2005年   1458篇
  2004年   1464篇
  2003年   1264篇
  2002年   1117篇
  2001年   249篇
  2000年   179篇
  1999年   229篇
  1998年   259篇
  1997年   174篇
  1996年   174篇
  1995年   142篇
  1994年   162篇
  1993年   133篇
  1992年   136篇
  1991年   103篇
  1990年   83篇
  1989年   83篇
  1988年   91篇
  1987年   87篇
  1986年   71篇
  1985年   88篇
  1984年   88篇
  1983年   93篇
  1982年   83篇
  1981年   72篇
  1980年   74篇
  1979年   49篇
  1978年   54篇
  1977年   46篇
  1976年   48篇
  1974年   35篇
  1971年   35篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
901.
The mating system of flowering plant populations evolves through selection on genetically based phenotypic variation in floral traits. The physical separation of anthers and stigmas within flowers (herkogamy) is expected to be an important target of selection to limit self-fertilization. We investigated the pattern of phenotypic and genetic variation in herkogamy and its effect of self-fertilization in a broad sample of natural populations of Aquilegia canadensis, a species that is highly selfing despite strong inbreeding depression. Within natural populations, plants exhibit substantial phenotypic variation in herkogamy caused primarily by variation in pistil length rather than stamen length. Compared to other floral traits, herkogamy is much more variable and a greater proportion of variation is distributed among rather than within individuals. We tested for a genetic component of this marked phenotypic variation by growing naturally pollinated seed families from five populations in a common greenhouse environment. For three populations, we detected a significant variation in herkogamy among families, and a positive regression between parental herkogamy measured in the field and progeny herkogamy in the greenhouse, suggesting that there is often genetic variation in herkogamy within natural populations. We estimated levels of self-fertilization for groups of flowers that differed in herkogamy and show that, as expected, herkogamy was associated with reduced selfing in 13 of 19 populations. In six of these populations, we performed floral emasculations to show that this decrease in selfing is due to decreased autogamy (within-flower selfing), the mode of selfing that herkogamy should most directly influence. Taken together, these results suggest that increased herkogamy should be selected to reduce the production of low-quality selfed seed. The combination of high selfing and substantial genetic variation for herkogamy in A. canadensis is enigmatic, and reconciling this observation will require a more integrated analysis of how herkogamy influences not only self-fertilization, but also patterns of outcross pollen import and export.  相似文献   
902.
Huttunen HJ  Greco C  Kovacs DM 《FEBS letters》2007,581(8):1688-1692
Previous studies have shown that acyl-coenzyme A:cholesterol acyl transferase (ACAT), an enzyme that controls cellular equilibrium between free cholesterol and cholesteryl esters, modulates proteolytic processing of APP in cell-based and animal models of Alzheimer's disease. Here we report that ACAT-1 RNAi reduced cellular ACAT-1 protein by approximately 50% and cholesteryl ester levels by 22% while causing a slight increase in the free cholesterol content of ER membranes. This correlated with reduced proteolytic processing of APP and 40% decrease in Abeta secretion. These data show that even a modest decrease in ACAT activity can have robust suppressive effects on Abeta generation.  相似文献   
903.
Jing R  Johnson R  Seres A  Kiss G  Ambrose MJ  Knox MR  Ellis TH  Flavell AJ 《Genetics》2007,177(4):2263-2275
Sequence diversity of 39 dispersed gene loci was analyzed in 48 diverse individuals representative of the genus Pisum. The different genes show large variation in diversity parameters, suggesting widely differing levels of selection and a high overall diversity level for the species. The data set yields a genetic diversity tree whose deep branches, involving wild samples, are preserved in a tree derived from a polymorphic retrotransposon insertions in an identical sample set. Thus, gene regions and intergenic "junk DNA" share a consistent picture for the genomic diversity of Pisum, despite low linkage disequilibrium in wild and landrace germplasm, which might be expected to allow independent evolution of these very different DNA classes. Additional lines of evidence indicate that recombination has shuffled gene haplotypes efficiently within Pisum, despite its high level of inbreeding and widespread geographic distribution. Trees derived from individual gene loci show marked differences from each other, and genetic distance values between sample pairs show high standard deviations. Sequence mosaic analysis of aligned sequences identifies nine loci showing evidence for intragenic recombination. Lastly, phylogenetic network analysis confirms the non-treelike structure of Pisum diversity and indicates the major germplasm classes involved. Overall, these data emphasize the artificiality of simple tree structures for representing genomic sequence variation within Pisum and emphasize the need for fine structure haplotype analysis to accurately define the genetic structure of the species.  相似文献   
904.
Reid CW  Legaree BA  Clarke AJ 《FEBS letters》2007,581(25):4988-4992
Lytic transglycosylases cleave the beta-(1-->4)-glycosidic bond in the bacterial cell wall heteropolymer peptidoglycan between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues with the concomitant formation of a 1,6-anhydromuramoyl residue. Based on sequence alignments, Ser216 in Pseudomonas aeruginosa membrane-bound lytic transglycosylase B (MltB) was targeted for replacement with alanine to delineate its role in the enzyme's mechanism of action. The specific activity of the Ser216-->Ala MltB derivative was less than 12% of that for the wild-type enzyme, while its substrate binding affinity remained virtually unaltered. These data are in agreement with a role of Ser216 in orienting the N-acetyl group on MurNAc at the -1 subsite of MltB for its participation in a substrate-assisted mechanism of action.  相似文献   
905.
PrrC is a Sco homologue in Rhodobacter sphaeroides that is associated with PrrBA, a two-component signal transduction system that induces photosynthesis gene expression in response to a decrease in oxygen tension. Although Sco proteins have been shown to bind copper the observation that they are structurally-related to thioredoxins suggested that they might possess thiol-disulfide oxidoreductase activity. Our results show that PrrC reduces Cu(2+) to Cu(+) and possesses disulfide reductase activity. These results indicate that some bacterial Sco proteins may have biochemical properties that are distinct from those of mitochondrial Sco proteins.  相似文献   
906.
Understanding the connections among genotype, phenotype, and fitness through evolutionary time is a central goal of evolutionary genetics. Wrinkly spreader (WS) genotypes evolve repeatedly in model Pseudomonas populations and show substantial morphological and fitness differences. Previous work identified genes contributing to the evolutionary success of WS, in particular the di-guanylate cyclase response regulator, WspR. Here we scrutinize the Wsp signal transduction pathway of which WspR is the primary output component. The pathway has the hallmarks of a chemosensory pathway and genetic analyses show that regulation and function of Wsp is analogous to the Che chemotaxis pathway from Escherichia coli. Of significance is the methyltransferase (WspC) and methylesterase (WspF) whose opposing activities form an integral feedback loop that controls the activity of the kinase (WspE). Deductions based on the regulatory model suggested that mutations within wspF were a likely cause of WS. Analyses of independent WS genotypes revealed numerous simple mutations in this single open reading frame. Remarkably, different mutations have different phenotypic and fitness effects. We suggest that the negative feedback loop inherent in Wsp regulation allows the pathway to be tuned by mutation in a rheostat-like manner.  相似文献   
907.
The p38 signaling pathway is activated in response to cell stress and induces production of proinflammatory cytokines. P38alpha is phosphorylated and activated in response to cell stress by MKK3 and MKK6 and in turn phosphorylates a number of substrates, including MAPKAP kinase 2 (MK2). We have determined the crystal structure of the unphosphorylated p38alpha-MK2 heterodimer. The C-terminal regulatory domain of MK2 binds in the docking groove of p38alpha, and the ATP-binding sites of both kinases are at the heterodimer interface. The conformation suggests an extra mechanism in addition to the regulation of the p38alpha and MK2 phosphorylation states that prevents phosphorylation of substrates in the absence of cell stress. Addition of constitutively active MKK6-DD results in rapid phosphorylation of the p38alpha-MK2 heterodimer.  相似文献   
908.
An important feature of chemokines is their ability to bind to the glycosaminoglycan (GAG) side chains of proteoglycans, predominately heparin and heparan sulfate. To date, all chemokines tested bind to immobilized heparin in vitro, as well as cell surface heparan sulfate in vitro and in vivo. These interactions play an important role in modulating the action of chemokines by facilitating the formation of stable chemokine gradients within the vascular endothelium and directing leukocyte migration, by protecting chemokines from proteolysis, by inducing chemokine oligomerization, and by facilitating transcytosis. Despite the importance of eotaxin in eosinophil differentiation and recruitment being well established, little is known about the interaction between eotaxin and GAGs and the functional consequences of such an interaction. Here we report that eotaxin binds selectively to immobilized heparin with high affinity (K(d) = 1.23 x 10(-8) M), but not to heparan sulfate or a range of other GAGs. The interaction of eotaxin with heparin does not promote eotaxin oligomerization but protects eotaxin from proteolysis directly by plasmin and indirectly by cathepsin G and elastase. In vivo, co-administration of eotaxin and heparin is able to significantly enhance eotaxin-mediated eosinophil recruitment in a mouse air-pouch model. Furthermore, when heparin is co-administered with eotaxin at a concentration that does not normally result in eosinophil infiltration, eosinophil recruitment occurs. In contrast, heparin does not enhance eotaxin-mediated eosinophil chemotaxis in vitro, suggesting protease protection or haptotactic gradient formation as the mechanism by which heparin enhances eotaxin action in vivo. These results suggest a role for mast cell-derived heparin in the recruitment of eosinophils, reinforcing Th2 polarization of inflammatory responses.  相似文献   
909.
910.
Zipper-interacting protein kinase (ZIPK) regulates Ca(2+)-independent phosphorylation of both smooth muscle (to regulate contraction) and non-muscle myosin (to regulate non-apoptotic cell death) through either phosphorylation and inhibition of myosin phosphatase, the myosin phosphatase inhibitor CPI17, or direct phosphorylation of myosin light chain. ZIPK is regulated by multisite phosphorylation. Phosphorylation at least three sites Thr-180, Thr-225, and Thr-265 has been shown to be essential for full activity, whereas phosphorylation at Thr-299 regulates its intracellular localization. Herein we utilized an unbiased proteomics screen of smooth muscle extracts with synthetic peptides derived from the sequence of the regulatory phosphorylation sites of the enzyme to identify the protein kinases that might regulate ZIPK activity in vivo. Discrete kinase activities toward Thr-265 and Thr-299 were defined and identified by mass spectrometry as Rho kinase 1 (ROCK1). In vitro, ROCK1 showed a high degree of substrate specificity toward native ZIPK, both stoichiometrically phosphorylating the enzyme at Thr-265 and Thr-299 as well as bringing about activation. In HeLa cells, coexpression of ZIPK with ROCK1 altered the ROCK-induced phenotype of focused stress fiber pattern to a Rho-like phenotype of parallel stress fiber pattern. This effect was also dependent upon phosphorylation at Thr-265. Our findings provide a new regulatory pathway in smooth muscle and non-muscle cells whereby ROCK1 phosphorylates and regulates ZIP kinase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号