首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25106篇
  免费   2253篇
  国内免费   9篇
  2024年   27篇
  2023年   111篇
  2022年   194篇
  2021年   607篇
  2020年   372篇
  2019年   435篇
  2018年   497篇
  2017年   465篇
  2016年   763篇
  2015年   1244篇
  2014年   1407篇
  2013年   1604篇
  2012年   2131篇
  2011年   2164篇
  2010年   1385篇
  2009年   1129篇
  2008年   1709篇
  2007年   1601篇
  2006年   1440篇
  2005年   1434篇
  2004年   1435篇
  2003年   1230篇
  2002年   1079篇
  2001年   222篇
  2000年   154篇
  1999年   206篇
  1998年   243篇
  1997年   162篇
  1996年   162篇
  1995年   129篇
  1994年   150篇
  1993年   125篇
  1992年   120篇
  1991年   85篇
  1990年   67篇
  1989年   65篇
  1988年   74篇
  1987年   73篇
  1986年   53篇
  1985年   62篇
  1984年   77篇
  1983年   85篇
  1982年   74篇
  1981年   63篇
  1980年   64篇
  1979年   42篇
  1978年   51篇
  1977年   36篇
  1976年   43篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 640 毫秒
961.
962.
963.
964.
The technologies of recombinant gene expression have greatly enhanced the structural and functional analyses of genetic elements and proteins. Vaccinia virus, a large double-stranded DNA virus and the prototypic and best characterized member of the poxvirus family, has been an instrumental tool among these technologies and the recombinant vaccinia virus system has been widely employed to express genes from eukaryotic, prokaryotic, and viral origins. Vaccinia virus is also the prototype live viral vaccine and serves as the basis for well established viral vectors which have been successfully evaluated as human and animal vaccines for infectious diseases and as anticancer vaccines in a variety of animal model systems. Vaccinia virus technology has also been instrumental in a number of unique applications, from the discovery of new viral receptors to the synthesis and assembly of other viruses in culture. Here we provide a simple and detailed outline of the processes involved in the generation of a typical recombinant vaccinia virus, along with an up to date review of relevant literature.  相似文献   
965.
The Green Fluorescent Protein (GFP) from Aequorea victoria has begun to be used as a reporter protein in plants. It is particularly useful as GFP fluorescence can be detected in a non-destructive manner, whereas detection of enzyme-based reporters often requires destruction of the plant tissue. The use of GFP as a reporter enables transgenic plant tissues to be screened in vivo at any growth stage. Quantification of GFP in transgenic plant extracts will increase the utility of GFP as a reporter protein. We report herein the quantification of a mGFP5-ER variant in tobacco leaf extracts by UV excitation and a sGFP(S65T) variant in sugarcane leaf and callus extracts by blue light excitation using the BioRad VersaFluorTM Fluorometer System or the Labsystems Fluoroskan Ascent FL equipped with a narrow band emission filter (510 ± 5 nm). The GFP concentration in transgenic plant extracts was determined from a GFP-standard series prepared in untransformed plant extract with concentrations ranging from 0.1 to 4 g/ml of purified rGFP. Levels of sgfp(S65T) expression, driven by the maize ubiquitin promoter, in sugarcane calli and leaves ranged up to 0.525 g and 2.11 g sGFP(S65T) per mg of extractable protein respectively. In tobacco leaves the expression of mgfp5-ER, driven by the cauliflower mosaic virus (CaMV) 35S promoter, ranged up to 7.05 g mGFP5-ER per mg extractable protein.  相似文献   
966.
967.
968.
969.
Several factors have combined with an upper respiratory tract disease (URTD) to produce declines on some population numbers of desert tortoises (Gopherus agassizii) in the western USA. This study was designed to determine the seroepidemiology of URTD in a population of wild adult tortoises at the Desert Tortoise Research Natural Area (DTNA) study site in Kern County (California, USA). Prior to initiation of the study, there was a dramatic decline in the number of individuals in this population. At each individual time point, samples were obtained from 12 to 20 tortoises with radiotransmitters during winter, spring, summer, and fall from 1992 through 1995. During the course of the study, 35 animals were sampled at one or more times. Only 10 animals were available for consistent monitoring throughout the 4 yr period. Specific antibody (Ab) levels to Mycoplasma agassizii were determined for individual tortoises by an enzyme-linked immunosorbent assay (ELISA) test. Specific Ab levels were not influenced by the gender of the tortoise. Levels of Ab and distribution of ELISA+, ELISA- and suspect animals were not consistently affected by season within a single year or for a season among the study years. Significantly more tortoises presented with clinical signs in 1992 and 1995. The profile of ELISA+ animals with clinical signs shifted from 5% (1992) to 42% (1995). In 1992, 52% of tortoises lacked clinical signs and were ELISA-. In 1995, this category accounted for only 19% of tortoises. Based on the results of this study, we conclude that URTD was present in this population as evidenced by the presence of ELISA+ individual animals, and that the infectious agent is still present as evidenced by seroconversion of previously ELISA- animals during the course of the study. There is evidence to suggest that animals may remain ELISA+ without showing overt disease, a clinical pattern consistent with the chronic nature of most mycoplasmal infections. Further, there are trends suggesting that the clinical expression of disease may be cyclical. Continued monitoring of this population could provide valuable information concerning the spread of URTD in wild tortoise populations.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号