首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25252篇
  免费   2247篇
  国内免费   10篇
  27509篇
  2024年   33篇
  2023年   124篇
  2022年   313篇
  2021年   607篇
  2020年   372篇
  2019年   435篇
  2018年   497篇
  2017年   465篇
  2016年   763篇
  2015年   1244篇
  2014年   1407篇
  2013年   1604篇
  2012年   2131篇
  2011年   2165篇
  2010年   1385篇
  2009年   1129篇
  2008年   1709篇
  2007年   1602篇
  2006年   1440篇
  2005年   1434篇
  2004年   1435篇
  2003年   1231篇
  2002年   1079篇
  2001年   222篇
  2000年   154篇
  1999年   206篇
  1998年   243篇
  1997年   162篇
  1996年   162篇
  1995年   129篇
  1994年   150篇
  1993年   125篇
  1992年   120篇
  1991年   85篇
  1990年   67篇
  1989年   65篇
  1988年   74篇
  1987年   73篇
  1986年   53篇
  1985年   62篇
  1984年   77篇
  1983年   85篇
  1982年   74篇
  1981年   63篇
  1980年   64篇
  1979年   42篇
  1978年   51篇
  1977年   36篇
  1976年   43篇
  1974年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.  相似文献   
172.
Multi-protein complexes, termed “inflammasomes,” are known to contribute to neuronal cell death and brain injury following ischemic stroke. Ischemic stroke increases the expression and activation of nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) Pyrin domain containing 1 and 3 (NLRP1 and NLRP3) inflammasome proteins and both interleukin (IL)-1β and IL-18 in neurons. In this study, we provide evidence that activation of either the NF-κB and MAPK signaling pathways was partly responsible for inducing the expression and activation of NLRP1 and NLRP3 inflammasome proteins and that these effects can be attenuated using pharmacological inhibitors of these two pathways in neurons and brain tissue under in vitro and in vivo ischemic conditions, respectively. Moreover, these findings provided supporting evidence that treatment with intravenous immunoglobulin (IVIg) preparation can reduce activation of the NF-κB and MAPK signaling pathways resulting in decreased expression and activation of NLRP1 and NLRP3 inflammasomes, as well as increasing expression of anti-apoptotic proteins, Bcl-2 and Bcl-xL, in primary cortical neurons and/or cerebral tissue under in vitro and in vivo ischemic conditions. In summary, these results provide compelling evidence that both the NF-κB and MAPK signaling pathways play a pivotal role in regulating the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons and brain tissue under ischemic conditions. In addition, treatment with IVIg preparation decreased the activation of the NF-κB and MAPK signaling pathways, and thus attenuated the expression and activation of NLRP1 and NLRP3 inflammasomes in primary cortical neurons under ischemic conditions. Hence, these findings suggest that therapeutic interventions that target inflammasome activation in neurons may provide new opportunities in the future treatment of ischemic stroke.  相似文献   
173.
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia   总被引:39,自引:0,他引:39  
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.  相似文献   
174.
We describe aspects of genetic diversity in several ethnic populations of the Caucasus Mountains of Daghestan using mitochondrial DNA sequences and a sample of 100 polymorphic Alu insertion loci. The mitochondrial DNA (mtDNA) sequences are like those of Europe. Principal coordinates and nearest neighbor statistics show that there is little detectable structure in the distances among populations computed from mtDNA. The Alu frequencies of the Caucasus populations suggest that they have undergone more genetic drift than most other groups since the dispersal of modern humans. Genetic differences among these populations are not large; instead, they are of the same order as distances among populations of Europe. We compare two methods of inference about the demography of ancient colonizing populations from Africa, one based on conventional FST statistics and one based on mean Alu insertion frequencies. The two approaches agree reasonably well if we assume that there was demographic growth in Africa before the diaspora of ancestors of contemporary regional human groups outside Africa.  相似文献   
175.
176.
Abstract

Most animal studies conducted to determine the bioavailability of lead have, in the past, employed rodents or lagomorphs as experimental models. In this paper issues and data are presented which raise questions and uncertainties about employing rodents or lagomorphs for investigations into the bioavailability of lead. These issues include: (1) the possible role of coprophagy and feeding behavior in reducing estimates of lead bioavailability; (2) anatomical and physiological differences related to coprophagy which may influence estimates of lead bioavailability derived in rats or rabbits; (3) evidence for relatively high biliary excretion of lead by rats and rabbits; (4) the possibility of a strong developmental component to the active transport of lead. The importance of addressing these and other questions in studies designed to determine the bioavailability of lead is discussed.  相似文献   
177.
Our aim was to determine whether the expression of endothelin-converting enzyme in human tissues would correlate with the distribution of its substrate, big endothelin-1, and its product, the mature peptide. Site-directed antisera raised against the conserved C-terminus of the mammalian enzyme were used to measure the immunoreactive enzyme in microsomal fractions prepared from tissue homogenates and to localize staining to the endothelial cells lining large conduit and smaller resistance vessels within cardiac, adrenal, respiratory and brain tissue. The activity of endothelin-converting enzyme was measured and characterized in isolated endothelial cells. This pattern of staining in the vascular endothelium paralleled that of mature endothelin and big endothelin-1, and these peptides were detectable by radioimmunoassay in all tissues examined. Immunoreactive endothelin-converting enzyme localized to other cell types, including bronchial epithelial cells, and to fibres within the glial limitans, neuronal processes and cell bodies of the cerebral cortex. Although perivascular astrocytes in the subcortical white matter displayed intense endothelin-converting enzyme-like immunoreactivity, endothelin staining was not detected. The results suggest that endothelin-converting enzyme has a ubiquitous distribution within the human vascular endothelium and is positioned to catalyse the conversion of big endothelin-1 to the biologically active endothelin-1, which on release may contribute to the maintenance of basal tone in humans. Endothelin-converting enzyme localized to epithelial cells in peripheral tissues or astrocytes within the brain may be upregulated in pathophysiological conditions in which endothelin levels are increased and could represent a further target for therapeutic intervention by enzyme inhibitors. © 1998 Chapman & Hall  相似文献   
178.
P450 BM3: the very model of a modern flavocytochrome   总被引:4,自引:0,他引:4  
Flavocytochrome P450 BM3 is a bacterial P450 system in which a fatty acid hydroxylase P450 is fused to a mammalian-like diflavin NADPH-P450 reductase in a single polypeptide. The enzyme is soluble (unlike mammalian P450 redox systems) and its fusion arrangement affords it the highest catalytic activity of any P450 mono-oxygenase. This article discusses the fundamental properties of P450 BM3 and how progress with this model P450 has affected our comprehension of P450 systems in general.  相似文献   
179.
Voltage-gated potassium channels control the membrane potential of excitable cells. To understand their function, knowledge of their structure is essential. However, these channels are scarce in natural sources, and overexpression is necessary to generate material for structural studies. We have compared functional expression of the Drosophila Shaker H4 potassium channel in stable insect cell lines and in baculovirus-infected insect cells, using three different baculovirus promoters. Stable insect cell lines expressed correctly assembled channel, which was glycosylated and found predominantly at, or close to, the cell surface. In comparison, the majority of baculovirus-overexpressed Shaker was intracellular and incorrectly assembled. The proportion of functional Shaker increased, however, if the weaker basic protein promoter was used rather than the stronger p10 or polyhedrin promoters. In addition, co-expression of the molecular chaperone, calnexin, increased the quantity of correctly assembled channel protein, suggesting that calnexin can be used to increase the efficiency of channel expression in insect cells.  相似文献   
180.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号