首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13867篇
  免费   1411篇
  国内免费   43篇
  2023年   53篇
  2022年   124篇
  2021年   251篇
  2020年   156篇
  2019年   190篇
  2018年   226篇
  2017年   203篇
  2016年   332篇
  2015年   629篇
  2014年   690篇
  2013年   822篇
  2012年   1073篇
  2011年   1021篇
  2010年   641篇
  2009年   588篇
  2008年   814篇
  2007年   761篇
  2006年   694篇
  2005年   663篇
  2004年   648篇
  2003年   603篇
  2002年   530篇
  2001年   273篇
  2000年   285篇
  1999年   270篇
  1998年   157篇
  1997年   125篇
  1996年   93篇
  1995年   94篇
  1994年   75篇
  1993年   97篇
  1992年   173篇
  1991年   149篇
  1990年   158篇
  1989年   142篇
  1988年   152篇
  1987年   118篇
  1986年   111篇
  1985年   123篇
  1984年   102篇
  1983年   55篇
  1982年   51篇
  1981年   59篇
  1980年   52篇
  1979年   89篇
  1978年   79篇
  1977年   70篇
  1976年   61篇
  1974年   50篇
  1973年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
Yoon HG  Chan DW  Huang ZQ  Li J  Fondell JD  Qin J  Wong J 《The EMBO journal》2003,22(6):1336-1346
Corepressors N-CoR and SMRT participate in diverse repression pathways and exist in large protein complexes including HDAC3, TBL1 and TBLR1. However, the roles of these proteins in SMRT-N-CoR complex function are largely unknown. Here we report the purification and functional characterization of the human N-CoR complex. The purified N-CoR complex contains 10-12 associated proteins, including previously identified components and a novel actin-binding protein IR10. We show that TBL1/TBLR1 associates with N-CoR through two independent interactions: the N-terminal region and the C-terminal WD-40 repeats interact with the N-CoR RD1 and RD4 region, respectively. In vitro, TBL1/TBLR1 bind histones H2B and H4, and, importantly, repression by TBL1/TBLR1 correlates with their interaction with histones. By using specific small interference RNAs (siRNAs), we demonstrate that HDAC3 is essential, whereas TBL1 and TBLR1 are functionally redundant but essential for repression by unliganded thyroid hormone receptor. Together, our data reveal the roles of HDAC3 and TBL/TBLR1 and provide evidence for the functional importance of histone interaction in repression mediated by SMRT-N-CoR complexes.  相似文献   
963.
964.
Guo Q  Zhou W  Too HM  Li J  Liu Y  Bartlam M  Dong Y  Wong KB  Shaw PC  Rao Z 《Protein engineering》2003,16(6):391-396
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) which possesses rRNA N-glycosidase activity. In recent years, its immunomodulatory, anti-tumor and anti-HIV properties have been revealed. Here we report the crystal structures of several E85 mutant TCS complexes with adenosine-5'-monophosphate (AMP) and adenine. In E85Q TCS/AMP and E85A TCS/AMP, near the active site of the molecule and parallel to the aromatic ring of Tyr70, an AMP molecule is bound to the mutant without being hydrolyzed. In the E85R TCS/adenine complex, the hydrolyzed product adenine is located in the active pocket where it occupies a position similar to that in the TCS/NADPH complex. Significantly, AMP is bound in a position different to that of adenine. In comparison with these structures, we suggest that there are at least two subsites in the active site of TCS, one for initial substrate recognition as revealed by the AMP site and another for catalysis as represented by the NADPH site. Based on these complex structures, the function of residue 85 and the mechanism of catalysis are proposed.  相似文献   
965.
In eukaryotic cells, the universal second messenger cAMP regulates various aspects of development and differentiation. The primary target for cAMP is the regulatory subunit of cAMP-dependent protein kinase A (PKA), which, upon cAMP binding, dissociates from the catalytic subunit and thus activates it. In the soil amoeba Dictyostelium discoideum, the function of PKA in growth, development and cell differentiation has been thoroughly investigated and substantial information is available. To obtain a more general view, we investigated the influence of PKA on development of the related species Polysphondylium pallidum. Cells were transformed to overexpress either a dominant negative mutant of the regulatory subunit (Rm) from Dictyostelium that cannot bind cAMP, or the catalytic subunit (PKA-C) from Dictyostelium. Cells overexpressing Rm rarely aggregated and the few multicellular structures developed slowly into very small fruiting bodies without branching of secondary sorogens, the prominent feature of Polysphondylium. Few round spores with reduced viability were formed. When mixed with wild-type cells and allowed to develop, the Rm cells were randomly distributed in aggregation streams, but were later found in the posterior region of the culminating slug or were left behind on the surface of the substratum. The PKA-C overexpressing cells exhibited precocious development and formed more aggregates of smaller size. Moreover, expression of PKA-C under the control of the prestalk-specific ecmB promoter of Dictyostelium leads to protrusions from aggregation streams. We conclude that Dictyostelium PKA subunits introduced into Polysphondylium cells are functional as signal components, indicating that a biochemically similar PKA mechanism works in Polysphondylium.  相似文献   
966.
The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.  相似文献   
967.
968.
969.
Mao Y  Zhang Z  Wong B 《Molecular microbiology》2003,50(5):1617-1628
Glycophosphatidylinositol (GPI)-anchored proteins account for 26-35% of the Candida albicans cell wall. To understand the signals that regulate these proteins' cell surface localization, green fluorescent protein (GFP) was fused to the N- and C-termini of the C. albicans cell wall proteins (CWPs) Hwp1p, Als3p and Rbt5p. C. albicans expressing all three fusion proteins were fluorescent at the cell surface. GFP was released from membrane fractions by PI-PLC and from cell walls by beta-glucanase, which implied that GFP was GPI-anchored to the plasma membrane and then covalently attached to cell wall glucans. Twenty and 25 amino acids, respectively, from the N- and C-termini of Hwp1p were sufficient to target GFP to the cell surface. C-terminal substitutions that are permitted by the omega rules (G613D, G613N, G613S, G613A, G615S) did not interfere with GFP localization, whereas some non-permitted substitutions (G613E, G613Q, G613R, G613T and G615Q) caused GFP to accumulate in intracellular ER-like structures and others (G615C, G613N/G615C and G613D/G615C) did not. These results imply that (i) GFP fusions can be used to analyse the N- and C-terminal signal peptides of GPI-anchored CWPs, (ii) the omega amino acid in Hwp1p is G613, and (iii) C can function at the omega+2 position in C. albicans GPI-anchored proteins.  相似文献   
970.
The mechanism of action of microcin E492 (MccE492) was investigated for the first time in live bacteria. MccE492 was expressed and purified to homogeneity through an optimized large-scale procedure. Highly purified MccE492 showed potent antibacterial activity at minimal inhibitory concentrations in the range of 0.02-1.2 microM. The microcin bactericidal spectrum of activity was found to be restricted to Enterobacteriaceae and specifically directed against Escherichia and Salmonella species. Isogenic bacteria that possessed mutations in membrane proteins, particularly of the TonB-ExbB-ExbD complex, were assayed. The microcin bactericidal activity was shown to be TonB- and energy-dependent, supporting the hypothesis that the mechanism of action is receptor mediated. In addition, MccE492 depolarized and permeabilized the E. coli cytoplasmic membrane. The membrane depolarization was TonB dependent. From this study, we propose that MccE492 is recognized by iron-siderophore receptors, including FepA, which promote its import across the outer membrane via a TonB- and energy-dependent pathway. MccE492 then inserts into the inner membrane, whereupon the potential becomes destabilized by pore formation. Because cytoplasmic membrane permeabilization of MccE492 occurs beneath the threshold of the bactericidal concentration and does not result in cell lysis, the cytoplasmic membrane is not hypothesized to be the sole target of MccE492.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号