首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13867篇
  免费   1411篇
  国内免费   43篇
  2023年   53篇
  2022年   124篇
  2021年   251篇
  2020年   156篇
  2019年   190篇
  2018年   226篇
  2017年   203篇
  2016年   332篇
  2015年   629篇
  2014年   690篇
  2013年   822篇
  2012年   1073篇
  2011年   1021篇
  2010年   641篇
  2009年   588篇
  2008年   814篇
  2007年   761篇
  2006年   694篇
  2005年   663篇
  2004年   648篇
  2003年   603篇
  2002年   530篇
  2001年   273篇
  2000年   285篇
  1999年   270篇
  1998年   157篇
  1997年   125篇
  1996年   93篇
  1995年   94篇
  1994年   75篇
  1993年   97篇
  1992年   173篇
  1991年   149篇
  1990年   158篇
  1989年   142篇
  1988年   152篇
  1987年   118篇
  1986年   111篇
  1985年   123篇
  1984年   102篇
  1983年   55篇
  1982年   51篇
  1981年   59篇
  1980年   52篇
  1979年   89篇
  1978年   79篇
  1977年   70篇
  1976年   61篇
  1974年   50篇
  1973年   58篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
882.
The strong association of type 1 diabetes with specific MHC class II genes, such as I-A(g7) in nonobese diabetic mice and HLA-DQ8 in humans, suggests that MHC class II molecules play an important role in the development of the disease. To test whether human DQ8 molecules could cross the species barrier and functionally replace their murine homolog I-A(g7), we generated DQ8/BDC2.5 transgenic mice. We have shown that BDC2.5 transgenic T cells are selected on DQ8 in the thymus and cause diabetes in a manner similar to that seen when the T cells are selected on H2(g7). Splenocytes from DQ8/BDC2.5 mice also showed reactivity toward islets in vitro as seen in H-2(g7)/BDC2.5 mice. We conclude that DQ8 molecules not only share structural similarity with the murine homolog I-A(g7), but also can cross the species barrier and functionally replace I-A(g7) molecules to stimulate diabetogenic T cells and produce diabetes.  相似文献   
883.
Chao L  Rang CU  Wong LE 《Journal of virology》2002,76(7):3276-3281
When a parent virus replicates inside its host, it must first use its own genome as the template for replication. However, once progeny genomes are produced, the progeny can in turn act as templates. Depending on whether the progeny genomes become templates, the distribution of mutants produced by an infection varies greatly. While information on the distribution is important for many population genetic models, it is also useful for inferring the replication mode of a virus. We have analyzed the distribution of mutants emerging from single bursts in the RNA bacteriophage phi6 and find that the distribution closely matches a Poisson distribution. The match suggests that replication in this bacteriophage is effectively by a stamping machine model in which the parental genome is the main template used for replication. However, because the distribution deviates slightly from a Poisson distribution, the stamping machine is not perfect and some progeny genomes must replicate. By fitting our data to a replication model in which the progeny genomes become replicative at a given rate or probability per round of replication, we estimated the rate to be very low and on the on the order of 10(-4). We discuss whether different replication modes may confer an adaptive advantage to viruses.  相似文献   
884.
Zhang S  Wong L  Meng L  Lemaux PG 《Planta》2002,215(2):191-194
Expression of knotted1 ( kn1) and ZmLEC1, a maize homologue of the Arabidopsis LEAFY COTYLEDON1 ( LEC1) was studied using in situ hybridization during in vitro somatic embryogenesis of maize ( Zea mays L.) genotype Hi-II. Expression of kn1 was initially detected in a small group of cells (5-10) in the somatic embryo proper at the globular stage, in a specific region where the shoot meristem is initiating at the scutellar stage, and specifically in the shoot meristem at the coleoptilar stage. Expression of ZmLEC1 was strongly detected in the entire somatic embryo proper at the globular stage, gradually less in the differentiating scutellum at the scutellar and coleoptilar stages. The results of analyses show that the expression pattern of kn1 during in vitro somatic embryogenesis of maize is similar to that of kn1 observed during zygotic embryo development in maize. The expression pattern of ZmLEC1 in maize during in vitro development is similar to that of LEC1 in Arabidopsis during zygotic embryo development. These observations indicate that in vitro somatic embryogenesis likely proceeds through similar developmental pathways as zygotic embryo development, after somatic cells acquire competence to form embryos. In addition, based on the ZmLEC1 expression pattern, we suggest that expression of ZmLEC1 can be used as a reliable molecular marker for detecting early-stage in vitro somatic embryogenesis in maize.  相似文献   
885.
Iota-toxin from Clostridium perfringens type E is a binary toxin consisting of two independent proteins, an enzymatic Ia and binding Ib component. Ia catalyses ADP-ribosylation of actin monomers, thus disrupting the actin cytoskeleton. In this report, we show that Ia plus Ib applied apically or basolaterally induce a rapid decrease in the transepithelial resistance (TER) of CaCo-2 cell monolayers and disorganization of actin filaments as well as the tight and adherens junctions. Ib alone, on the apical or basolateral side, slowly decreased the TER without affecting the actin cytoskeleton, possibly via pore formation. Interestingly, the two iota-toxin components inoculated separately on each cell surface induced cytopathic effects and a TER decrease. Anti-Ib sera, raised against the whole molecule or the Ia docking domain and applied to the opposite cell side versus Ib, neutralized the TER decrease. In addition, radioactive Ib incubated in the basolateral compartment was detected on the apical side by selective cell surface biotinylation. This argues for a transcytotic routing of Ib to mediate internalization of Ia from the opposite cell surface. Bafilomycin A1 also prevented the cytopathic effects of Ia and Ib applied separately to each cell side, possibly by blocking translocation of Ia into the cytosol and/or the intracellular transport of Ib. Ib is either routed into the cell independently of Ia, trans-cytosed and permanently exposed on the opposite cell surface or continuously recycled between an endosomal compartment and the cell surface.  相似文献   
886.
Mycobacterium tuberculosis produces a series of major secreted proteins, the fibronectin-binding proteins (Fbps), also known as the antigen 85 complex, that are believed to play an essential role in the pathogenesis of tuberculosis through their mycoloyltransferase activity required for maintaining the integrity of the bacterial cell envelope. Four different fbp genes are found in the genome of M. tuberculosis, but the reason for the existence of these Fbps sharing the same substrate specificity in vitro in mycobacteria is unknown. We have shown previously that, in the heterologous host, Corynebacterium glutamicum, FbpA, FbpB and FbpC can all add mycoloyl residues to the cell wall arabinogalactan and that, in M. tuberculosis, the cell wall mycoloylation decreases by 40% when fbpC is knocked out. To investigate whether the remaining 60% mycoloylation came from the activity of FbpA and/or FbpB, fbpA- and fbpB-inactivated mutant strains were biochemically characterized and compared with the previously studied fbpC-disrupted mutant. Unexpectedly, both mutants produced normally mycoloylated cell walls. Overproduction of FbpA, FbpB or FbpC, but not FbpD, in the fbpC-inactivated mutant strain of M. tuberculosis restored both the cell wall-linked mycolate defect and the outer cell envelope permeability barrier property. These results are consistent with all three enzymes being involved in cell wall mycoloylation and FbpC playing a more critical role than the others or, alternatively, FbpC is able to compensate for FbpA and FbpB in ways that these enzymes cannot compensate for FbpC, pointing to a partial redundancy of Fbps. In sharp contrast, FbpD does not appear to be an active mycoloyltransferase enzyme, as it cannot complement the fbpC-inactivated mutant. Most importantly, application of Smith degradation to the cell walls of transformants demonstrated that the multiple Fbp enzymes are redundant rather than specific for the various arabinogalactan mycoloylation regions. Neither FbpA nor FbpB attaches mycoloyl residues to specific sites but, like FbpC, each enzyme transfers mycoloyl residues onto the four sites present in the arabinogalactan non-reducing end hexaarabinosides.  相似文献   
887.
Recent studies of molecular guidance cues including the Slit family of secreted proteins have provided new insights into the mechanisms of cell migration. Initially discovered in the nervous system, Slit functions through its receptor, Roundabout, and an intracellular signal transduction pathway that includes the Abelson kinase, the Enabled protein, GTPase activating proteins and the Rho family of small GTPases. Interestingly, Slit also appears to use Roundabout to control leukocyte chemotaxis, which occurs in contexts different from neuronal migration, suggesting a fundamental conservation of mechanisms guiding the migration of distinct types of somatic cells.  相似文献   
888.
We show here that the pvr2 locus in pepper, conferring recessive resistance against strains of potato virus Y (PVY), corresponds to a eukaryotic initiation factor 4E (eIF4E) gene. RFLP analysis on the PVY-susceptible and resistant pepper cultivars, using an eIF4E cDNA from tobacco as probe, revealed perfect map co-segregation between a polymorphism in the eIF4E gene and the pvr2 alleles, pvr2(1) (resistant to PVY-0) and pvr2(2) (resistant to PVY-0 and 1). The cloned pepper eIF4E cDNA encoded a 228 amino acid polypeptide with 70-86% nucleotide sequence identity with other plant eIF4Es. The sequences of eIF4E protein from two PVY-susceptible cultivars were identical and differed from the eIF4E sequences of the two PVY-resistant cultivars Yolo Y (YY) (pvr2(1)) and FloridaVR2 (F) (pvr2(2)) at two amino acids, a mutation common to both resistant genotypes and a second mutation specific to each. Complementation experiments were used to show that the eIF4E gene corresponds to pvr2. Thus, potato virus X-mediated transient expression of eIF4E from susceptible cultivar Yolo Wonder (YW) in the resistant genotype YY resulted in loss of resistance to subsequent PVY-0 inoculation and transient expression of eIF4E from YY (resistant to PVY-0; susceptible to PVY-1) rendered genotype F susceptible to PVY-1. Several lines of evidence indicate that interaction between the potyvirus genome-linked protein (VPg) and eIF4E are important for virus infectivity, suggesting that the recessive resistance could be due to incompatibility between the VPg and eIF4E in the resistant genotype.  相似文献   
889.
890.
An affinity chromatography method has been developed for purification of endoxylanase inhibitors concentrated by cation exchange chromatography from wheat whole meal and is based on immobilisation of a Bacillus subtilis family 11 endoxylanase on N-hydroxysuccinimide activated Sepharose 4 Fast Flow. When followed by high-resolution cation exchange chromatography, the purification of seven TAXIs, Triticum aestivum L. endoxylanase inhibitors was achieved so extending the number of such proteins known to date (TAXI I and II). Based on their inhibition activities against a B. subtilis family 11 and an Aspergillus niger family 11 endoxylanase, six TAXI I- and only one TAXI II-like inhibitor could be distinguished. The first type of endoxylanase inhibitor is active against both endoxylanases and the second type only has significant activity against the B. subtilis endoxylanase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号