首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14288篇
  免费   1328篇
  国内免费   2篇
  15618篇
  2023年   75篇
  2022年   110篇
  2021年   209篇
  2020年   154篇
  2019年   173篇
  2018年   239篇
  2017年   208篇
  2016年   355篇
  2015年   637篇
  2014年   650篇
  2013年   767篇
  2012年   1032篇
  2011年   912篇
  2010年   587篇
  2009年   521篇
  2008年   690篇
  2007年   723篇
  2006年   632篇
  2005年   576篇
  2004年   596篇
  2003年   564篇
  2002年   497篇
  2001年   278篇
  2000年   240篇
  1999年   267篇
  1998年   171篇
  1997年   116篇
  1996年   115篇
  1995年   125篇
  1994年   103篇
  1993年   108篇
  1992年   186篇
  1991年   173篇
  1990年   141篇
  1989年   150篇
  1988年   159篇
  1987年   116篇
  1986年   103篇
  1985年   113篇
  1984年   106篇
  1983年   94篇
  1982年   70篇
  1981年   66篇
  1979年   87篇
  1978年   75篇
  1977年   71篇
  1976年   63篇
  1974年   96篇
  1972年   60篇
  1970年   61篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Endometrial cancer (EC) is the most common gynaecological malignancy with increasing incidence in developed countries. As gold standard, hysteroscopy confirms only 30% of suspected ECs. The detection of EC cells in the vagina by fluorescence in situ hybridization (FISH) after a smear test could reduce invasive procedures in the future. Using array-based comparative genome hybridization (aCGH) on 65 endometrial carcinomas, most frequently imbalanced regions of the tumour genome were identified. Bacterial artificial chromosomes were used to generate FISH-probes homologue to these human regions. The FISH test was hybridized on swabs specimens collected from the vaginal cavity. Samples from six patients without EC were selected as a negative control and on 13 patients with known EC as a positive control. To distinguish between benign and EC cases, the cut-off value has been defined. A first validation of this EC-FISH Test was performed with swabs from 41 patients with suspected EC. The most common genomic imbalances in EC are around the CTNNB1, FBXW7 and APC genes. The cut-off is defined at 32% of analysed cells without diploid signal pattern. This differs significantly between the positive and negative controls (p < 0.001). In a first validation cohort of 41 patients with suspected EC, the EC-FISH Test distinguishes patients with and without EC with a sensitivity of 91% and a specificity of 83%. The negative predictive value is 96%. This is the first report of a non-invasive EC-FISH Test to predict EC in women with suspected EC.  相似文献   
992.
BackgroundGadolinium-enhancing (GD+) lesions and T2 lesions are MRI outcomes for phase-2 treatment trials in relapsing-remitting Multiple Sclerosis (RRMS). Little is known about predictors of lesion development and regression-to-the-mean, which is an important aspect in early baseline-to-treatment trials.ObjectivesTo quantify regression-to-the-mean and identify predictors of MRI lesion development in placebo cohorts.Methods21 Phase-2 and Phase-3 trials were identified by a systematic literature research. Random-effects meta-analyses were performed to estimate development of T2 and GD+ after 6 months (phase-2) or 2 years (phase-3). Predictors of lesion development were evaluated with mixed-effect meta-regression.ResultsThe mean number of GD+-lesions per scan was similar after 6 months (1.19, 95%CI: 0.87-1.51) and 2 years (1.19, 95%CI: 1.00-1.39). 39% of the patients were without new T2-lesion after 6 month and 19% after 2 years (95%CI: 12-25%). Mean number of baseline GD+-lesions was the best predictor for new lesions after 6 months.ConclusionBaseline GD-enhancing lesions predict evolution of Gd- and T2 lesions after 6 months and might be used to control for regression to the mean effects. Overall, proof-of-concept studies with a baseline to treatment design have to face a regression to 1.2 GD+lesions per scan within 6 months.  相似文献   
993.
ObjectivesLong-term magnetic resonance angiography (MRA) follow-up studies regarding cryptogenic nonperimesencephalic subarachnoid hemorrhage (nSAH) are scarce. This single-centre study identified all patients with angiographically verified cryptogenic nSAH from 1998 to 2007: The two main objectives were to prospectively assess the incidence of de novo aneurysm with 3.0-MRI years after cryptogenic nSAH in patients without evidence for further hemorrhage, and retrospectively assess patient demographics and outcome.MethodsFrom prospectively maintained report databases all patients with angiographically verified cryptogenic nSAH were identified. 21 of 29 patients received high-resolution 3T-MRI including time-of-flight and contrast-enhanced angiography, 10.2 ± 2.8 years after cryptogenic nSAH. MRA follow-up imaging was compared with initial digital subtraction angiography (DSA) and CT/MRA. Post-hemorrhage images were related to current MRI with reference to persistent lesions resulting from delayed cerebral ischemia (DCI) and post-hemorrhagic siderosis. Patient-based objectives were retrospectively abstracted from clinical databases.Results29 patients were identified with cryptogenic nSAH, 17 (59%) were male. Mean age at time of hemorrhage was 52.9 ± 14.4 years (range 4 – 74 years). 21 persons were available for long-term follow-up. In these, there were 213.5 person years of MRI-follow-up. No de novo aneurysm was detected. Mean modified Rankin Scale (mRS) during discharge was 1.28. Post-hemorrhage radiographic vasospasm was found in three patients (10.3%); DCI-related lesions occurred in one patient (3.4%). Five patients (17.2%) needed temporary external ventricular drainage; long-term CSF shunt dependency was necessary only in one patient (3.4%). Initial DSA retrospectively showed a 2 x 2 mm aneurysm of the right distal ICA in one patient, which remained stable. Post-hemorrhage siderosis was detected 8.1 years after the initial bleeding in one patient (4.8%).ConclusionPatients with cryptogenic nSAH have favourable outcomes and do not exhibit higher risks for de novo aneurysms. Therefore the need for long-term follow up after cryptogenic nSAH is questionable.  相似文献   
994.
Biological invasions provide excellent study systems to understand evolutionary, genetic and ecological processes during range expansions. There is strong evidence for positive effects of high propagule pressure and the associated higher genetic diversity on invasion success, but some species have become invasive despite small founder numbers. The raccoon (Procyon lotor) is often considered as a typical example for such a successful invasion resulting from a small number of founders. The species’ largest non-native population in Germany is commonly assumed to stem from a small number of founders and two separate founding events in the 1930s and 1940s. In the present study we analyzed 407 raccoons at 20 microsatellite loci sampled from the invasive range in Western Europe to test if these assumptions are correct. Contrary to the expectations, different genetic clustering methods detected evidence for at least four independent introduction events that gave rise to genetically differentiated subpopulations. Further smaller clusters were either artifacts or resulted from founder events at the range margin and recent release of captive individuals. We also found genetic evidence for on-going introductions of individuals. Furthermore a novel randomization process was used to determine the potential range of founder population size that would suffice to capture all the alleles present in a cluster. Our results falsify the assumption that this species has become widespread and abundant despite being genetically depauperate and show that historical records of species introductions may be misleading.  相似文献   
995.
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single proinflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could be explained by the widespread gene expression dysregulation known as “genomic storm” in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this storm. Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate, but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some proinflammatory molecules, complement components and endogenous “danger” signals. The improved survival in endotoxemia was associated with serum levels of proinflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.  相似文献   
996.
The opportunistic pathogen Pseudomonas aeruginosa is among the main colonizers of the lungs of cystic fibrosis (CF) patients. We have isolated and sequenced several P. aeruginosa isolates from the sputum of CF patients and compared them with each other and with the model strain PAO1. Phenotypic analysis of CF isolates showed significant variability in colonization and virulence-related traits suggesting different strategies for adaptation to the CF lung. Genomic analysis indicated these strains shared a large set of core genes with the standard laboratory strain PAO1, and identified the genetic basis for some of the observed phenotypic differences. Proteomics revealed that in a conventional laboratory medium PAO1 expressed 827 proteins that were absent in the CF isolates while the CF isolates shared a distinctive signature set of 703 proteins not detected in PAO1. PAO1 expressed many transporters for the uptake of organic nutrients and relatively few biosynthetic pathways. Conversely, the CF isolates expressed a narrower range of transporters and a broader set of metabolic pathways for the biosynthesis of amino acids, carbohydrates, nucleotides and polyamines. The proteomic data suggests that in a common laboratory medium PAO1 may transport a diverse set of “ready-made” nutrients from the rich medium, whereas the CF isolates may only utilize a limited number of nutrients from the medium relying mainly on their own metabolism for synthesis of essential nutrients. These variations indicate significant differences between the metabolism and physiology of P. aeruginosa CF isolates and PAO1 that cannot be detected at the genome level alone. The widening gap between the increasing genomic data and the lack of phenotypic data means that researchers are increasingly reliant on extrapolating from genomic comparisons using experimentally characterized model organisms such as PAO1. While comparative genomics can provide valuable information, our data suggests that such extrapolations may be fraught with peril.  相似文献   
997.

Purpose

Transient global amnesia (TGA) is a transitory, short-lasting neurological disorder characterized by a sudden onset of antero- and retrograde amnesia. Perfusion abnormalities in TGA have been evaluated mainly by use of positron emission tomography (PET) or single-photon emission computed tomography (SPECT). In the present study we explore the value of dynamic susceptibility contrast perfusion-weighted MRI (PWI) in TGA in the acute phase.

Methods

From a MRI report database we identified TGA patients who underwent MRI including PWI in the acute phase and compared these to control subjects. Quantitative perfusion maps (cerebral blood flow (CBF) and volume (CBV)) were generated and analyzed by use of Signal Processing In NMR-Software (SPIN). CBF and CBV values in subcortical brain regions were assessed by use of VOI created in FIRST, a model-based segmentation tool in the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL).

Results

Five TGA patients were included (2 men, 3 women). On PWI, no relevant perfusion alterations were found by visual inspection in TGA patients. Group comparisons for possible differences between TGA patients and control subjects showed significant lower rCBF values bilaterally in the hippocampus, in the left thalamus and globus pallidus as well as bilaterally in the putamen and the left caudate nucleus. Correspondingly, significant lower rCBV values were observed bilaterally in the hippocampus and the putamen as well as in the left caudate nucleus. Group comparisons for possible side differences in rCBF and rCBV values in TGA patients revealed a significant lower rCBV value in the left caudate nucleus.

Conclusions

Mere visual inspection of PWI is not sufficient for the assessment of perfusion changes in TGA in the acute phase. Group comparisons with healthy control subjects might be useful to detect subtle perfusion changes on PWI in TGA patients. However, this should be confirmed in larger data sets and serial PWI examinations.  相似文献   
998.
The dried blood spot (DBS) methodology provides a minimally invasive approach to sample collection and enables room-temperature storage for most analytes. DBS samples have successfully been analyzed by liquid chromatography multiple reaction monitoring mass spectrometry (LC/MRM-MS) to quantify a large range of small molecule biomarkers and drugs; however, this strategy has only recently been explored for MS-based proteomics applications. Here we report the development of a highly multiplexed MRM assay to quantify endogenous proteins in human DBS samples. This assay uses matching stable isotope-labeled standard peptides for precise, relative quantification, and standard curves to characterize the analytical performance. A total of 169 peptides, corresponding to 97 proteins, were quantified in the final assay with an average linear dynamic range of 207-fold and an average R2 value of 0.987. The total range of this assay spanned almost 5 orders of magnitude from serum albumin (P02768) at 18.0 mg/ml down to cholinesterase (P06276) at 190 ng/ml. The average intra-assay and inter-assay precision for 6 biological samples ranged from 6.1–7.5% CV and 9.5–11.0% CV, respectively. The majority of peptide targets were stable after 154 days at storage temperatures from −20 °C to 37 °C. Furthermore, protein concentration ratios between matching DBS and whole blood samples were largely constant (<20% CV) across six biological samples. This assay represents the highest multiplexing yet achieved for targeted protein quantification in DBS samples and is suitable for biomedical research applications.The dried blood spot (DBS)1 methodology provides several advantages over traditional plasma or serum samples throughout the entire pre-analytical workflow including sample collection, transportation, and storage (1, 2) These blood samples are typically generated using a small sterile lancet to prick the skin and then spotting a drop onto a collection card. Therefore, DBS sampling is less invasive than venipuncture and does not require a trained phlebotomist. This sampling approach also does not require time-sensitive centrifugation, which is crucial for plasma and serum samples to prevent degradation. Many analytes have been determined to be stable in the DBS format at room temperature, eliminating the cost associated with cold-chain logistics for sample transportation and storage. These considerations are also important for sample collection in remote locations that may be without reliable access to a centrifuge and/or a freezer designated for biohazardous materials. Quantitative bioanalytical methods using the DBS methodology have been developed for genomic, metabolomic, and proteomic applications including newborn screening (3, 4), therapeutic drug monitoring (5, 6), toxicology and drugs of abuse (7, 8), viral disease management (9, 10), and many others (2, 11).Targeted MS, in particular selected/multiple reaction monitoring (SRM/MRM) using internal standards, enables the rapid development of quantitative assays with high specificity, precision, and robustness (1215). The integration of DBS sampling with MRM is well-established for quantifying a wide range of small molecules (1618). This is now the standard analytical approach for population-wide screening of newborns for errors in metabolism by targeting amino acids, fatty acid acylcarnitines, and organic acid acylcarnitines (3, 4). DBS with MRM is also emerging as an important analytical tool throughout pre-clinical and clinical small-molecule drug development and monitoring (16, 17, 1921). Furthermore, Zukunft et al. recently demonstrated the high multiplexing capabilities of MRM by using 2 methods to quantify 188 metabolites in DBS samples, including acylcarnitines, amino acids, biogenic amines, free carnitine, glycerophospholipids, hexoses, lysophosphatidylcholines, phosphatidylcholines, and sphingolipids (22).Although DBS with MRM is well-established in small molecule applications, there are only a handful of reports showing the use of this approach to quantify endogenous proteins (23). Daniel et al. measured the ratio between hemoglobin δ and β to screen for β-thalassemia (24). Boemer et al. measured the relative ratios of several hemoglobin variants (including HbS, HbC, HbE, and others) to help diagnose Sickle Cell disease and other clinically relevant hemoglobinopathies (25). The same group then screened >40,000 newborns in Belgium and successfully detected 16 patients with severe hemoglobin disorders (26). Moats et al. used a similar approach to screen >13,000 newborns in the UK for Sickle Cell disease and correctly identified all seven disease occurrences (27). Because hemoglobin is the most abundant protein in whole blood (∼150 mg/ml), these four studies achieved adequate sensitivity by simply infusing the trypsin digested samples into a triple-quadrupole MS. To move beyond hemoglobin, additional sensitivity can be provided by using liquid chromatography (LC) separations coupled online with MRM. deWilde et al. used LC/MRM-MS to quantify ceruloplasmin as a screen for Wilson''s disease (28). Recently, Cox et al. reported LC/MRM-MS methods for quantifying insulin-like growth facter-1 for the detection of human growth hormone abuse in sports (29, 30).Our group reported the first LC/MRM-MS assay to quantify multiple endogenous proteins in DBS samples (31). In that exploratory study, we selected a small test panel of 60 high-abundance proteins and were ultimately able to quantify 37 proteins using stable isotope-labeled standard (SIS) peptides and standard curves. In this work, we describe method refinement and further evaluation of LC/MRM-MS for quantifying endogenous proteins in human DBS samples. A more comprehensive approach has now been taken to evaluate sensitivity and suitability, as the initial target panel has been increased to 393 proteins. The protocol has also been modified so that all liquid handling steps in the sample preparation protocol are now automated in a 96-well format for improved sample throughput. Standard curves using SIS peptides were produced using a pooled patient sample, and assay precision was determined in biological samples from six different individuals. In addition, we have provided a detailed discussion of the quantification results from multiple peptides per protein, a comparison to measured protein concentrations in whole blood, an analyte stability assessment at various storage temperatures, and an evaluation of volumetric spotting devices. Ultimately, we have developed a multiplexed LC/MRM-MS assay to quantify 97 proteins in DBS samples that is suitable for biomedical research applications.  相似文献   
999.
1000.
It has been suggested that the shape of the normalized time-varying elastance curve [E(n)(t(n))] is conserved in different cardiac pathologies. We hypothesize, however, that the E(n)(t(n)) differs quantitatively after myocardial infarction (MI). Sprague-Dawley rats (n = 9) were anesthetized, and the left anterior descending coronary artery was ligated to provoke the MI. A sham-operated control group (CTRL) (n = 10) was treated without the MI. Two months later, a conductance catheter was inserted into the left ventricle (LV). The LV pressure and volume were measured and the E(n)(t(n)) derived. Slopes of E(n)(t(n)) during the preejection period (alpha(PEP)), ejection period (alpha(EP)), and their ratio (beta = alpha(EP)/alpha(PEP)) were calculated, together with the characteristic decay time during isovolumic relaxation (tau) and the normalized elastance at end diastole (E(min)(n)). MI provoked significant LV chamber dilatation, thus a loss in cardiac output (-33%), ejection fraction (-40%), and stroke volume (-30%) (P < 0.05). Also, it caused significant calcium increase (17-fold), fibrosis (2-fold), and LV hypertrophy. End-systolic elastance dropped from 0.66 +/- 0.31 mmHg/microl (CTRL) to 0.34 +/- 0.11 mmHg/microl (MI) (P < 0.05). Normalized elastance was significantly reduced in the MI group during the preejection, ejection, and diastolic periods (P < 0.05). The slope of E(n)(t(n)) during the alpha(PEP) and beta were significantly altered after MI (P < 0.05). Furthermore, tau and end-diastolic E(min)(n) were both significantly augmented in the MI group. We conclude that the E(n)(t(n)) differs quantitatively in all phases of the heart cycle, between normal and hearts post-MI. This should be considered when utilizing the single-beat concept.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号