The complete amino acid sequence of apolipophorin-III (apoLp-III), a lipid-binding hemolymph protein from the greater wax
moth,Galleria mellonella, was determined by protein sequencing. The mature protein consists of 163 amino acid residues forming a protein of 18,075.5
Da. Its sequence is similar to apoLp-III from other Lepidopteran species, but remarkably different from the apoLp-IIIs of
insects from other orders. As shown by mass spectrometric analysis, the protein carries no modifications. Thus, all of its
known physiological functions, including its recently discovered immune response-stimulating activity, must reside in the
protein itself. 相似文献
Climatic change exposes temperate trees to the simultaneous alteration of various growth-relevant factors, among them increased temperatures, extended growing season length and rising atmospheric [CO2], often in combination with more severe droughts and reduced air humidities in summer, and elevated atmospheric N deposition. We conducted a multi-factorial climate chamber experiment to search for interactive effects of temperature (T), soil moisture (θ), water vapour saturation deficit (VPD) and N availability (N) on the growth of Fagus sylvatica saplings and for identifying the most relevant factors that control leaf area development and productivity under a future warmer and drier climate with continuing high N deposition. For each of the four factors, two levels were simulated, reflecting current and expected future conditions in Central European beech forests. All four factors (including VPD) had a significant effect on productivity; several factors (e.g. T × VPD) interacted in a synergistic way. Productivity was most tightly correlated with the number of leaves while leaf area was less influential and photosynthetic activity was of only minor importance. The number of leaves produced was most tightly correlated with θ, N and VPD, while leaf area (leaf expansion) showed closest relation to temperature. We conclude that predictions about the growth response of trees to climate change and altered atmospheric N deposition need to consider a multitude of environmental factors and must account for positive and negative factor interactions. 相似文献
Although intravenous immunoglobulins (IVIG) and other plasma therapeutics have had a relatively good safety record, improved methods for viral clearance are constantly being evaluated and incorporated into new manufacturing processes. Gamma irradiation has been used routinely to assure sterility of healthcare products and medical devices, but it has not been applied successfully as a viral inactivation method for biologics. We examine whether virucidal doses of gamma irradiation (50 kGy) can be delivered to a manufacturing intermediate form of IVIG, a fractionated plasma paste, with negligible effect on structural and functional integrity of purified IgG product. Immunoglobulins from paste were examined for radiation-induced damage by SDS-PAGE and ELISAs utilizing viral antigens specific for rubella, CMV and mumps. Fc domain integrity was assessed by immunoblotting, quantitatively comparing the binding of irradiated and non-irradiated materials to cell surface Fcgamma receptors, and by employing quantitative RT-PCR to study the kinetics of accumulation of mRNA for the immune modulatory cytokines IL-1alpha, IL-1beta, IL-4, IL-8, IFNgamma, and TNFalpha. The results demonstrate that Fab and Fc domains of IVIG remain essentially intact and functional after gamma irradiation to virucidal doses, suggesting that this method could be used to enhance the safety of IVIG products. 相似文献
Hereditary spastic paraplegias (HSPs) are characterized by progressive weakness and spasticity of the legs because of the degeneration of cortical motoneuron axons. SPG15 is a recessively inherited HSP variant caused by mutations in the ZFYVE26 gene and is additionally characterized by cerebellar ataxia, mental decline, and progressive thinning of the corpus callosum. ZFYVE26 encodes the FYVE domain-containing protein ZFYVE26/SPASTIZIN, which has been suggested to be associated with the newly discovered adaptor protein 5 (AP5) complex. We show that Zfyve26 is broadly expressed in neurons, associates with intracellular vesicles immunopositive for the early endosomal marker EEA1, and co-fractionates with a component of the AP5 complex. As the function of ZFYVE26 in neurons was largely unknown, we disrupted Zfyve26 in mice. Zfyve26 knockout mice do not show developmental defects but develop late-onset spastic paraplegia with cerebellar ataxia confirming that SPG15 is caused by ZFYVE26 deficiency. The morphological analysis reveals axon degeneration and progressive loss of both cortical motoneurons and Purkinje cells in the cerebellum. Importantly, neuron loss is preceded by accumulation of large intraneuronal deposits of membrane-surrounded material, which co-stains with the lysosomal marker Lamp1. A density gradient analysis of brain lysates shows an increase of Lamp1-positive membrane compartments with higher densities in Zfyve26 knockout mice. Increased levels of lysosomal enzymes in brains of aged knockout mice further support an alteration of the lysosomal compartment upon disruption of Zfyve26. We propose that SPG15 is caused by an endolysosomal membrane trafficking defect, which results in endolysosomal dysfunction. This appears to be particularly relevant in neurons with highly specialized neurites such as cortical motoneurons and Purkinje cells. 相似文献
Recently, we have described a panel of metastasis-associated antigens in the rat, i.e., of molecules expressed on metastasizing, but not on nonmetastasizing tumor lines. One of these molecules, recognized by the monoclonal antibody D6.1 and named accordingly D6.1A, was found to be abundantly expressed predominantly on mesenchyme-derived cells. The DNA of the antigen has been isolated and cloned. Surprisingly, the gene product proved to interfere strongly with coagulation.
The 1.182-kb cDNA codes for a 235–amino acid long molecule with a 74.2% homology in the nucleotide and a 70% homology in the amino acid sequence to CO-029, a human tumor-associated molecule. According to the distribution of hydrophobic and hydrophilic amino acids, D6.1A belongs to the tetraspanin superfamily. Western blotting of D6.1A-positive metastasizing tumor lines revealed that the D6.1A, like many tetraspanin molecules, is linked to further membrane molecules, one of which could be identified as α6β1 integrin. Transfection of a low-metastasizing tumor cell line with D6.1A cDNA resulted in increased metastatic potential and provided a clue as to the functional role of D6.1A. We noted massive bleeding around the metastases and, possibly as a consequence, local infarctions predominantly in the mesenteric region and all signs of a consumption coagulopathy. By application of the D6.1 antibody the coagulopathy was counterregulated, though not prevented.
It has been known for many years that tumor growth and progression is frequently accompanied by thrombotic disorders. Our data suggest that the phenomenon could well be associated with the expression of tetraspanin molecules.
Non adherent bone marrow derived cells (NA-BMCs) have recently been described to give rise to multiple mesenchymal phenotypes and have an impact in tissue regeneration. Therefore, the effects of murine bone marrow derived NA-BMCs were investigated with regard to engraftment capacities in allogeneic and syngeneic stem cell transplantation using transgenic, human CD4+, murine CD4−/−, HLA-DR3+ mice.
Methodology/Principal Findings
Bone marrow cells were harvested from C57Bl/6 and Balb/c wild-type mice, expanded to NA-BMCs for 4 days and characterized by flow cytometry before transplantation in lethally irradiated recipient mice. Chimerism was detected using flow cytometry for MHC-I (H-2D[b], H-2K[d]), mu/huCD4, and huHLA-DR3). Culturing of bone marrow cells in a dexamethasone containing DMEM medium induced expansion of non adherent cells expressing CD11b, CD45, and CD90. Analysis of the CD45+ showed depletion of CD4+, CD8+, CD19+, and CD117+ cells. Expanded syngeneic and allogeneic NA-BMCs were transplanted into triple transgenic mice. Syngeneic NA-BMCs protected 83% of mice from death (n = 8, CD4+ donor chimerism of 5.8±2.4% [day 40], P<.001). Allogeneic NA-BMCs preserved 62.5% (n = 8) of mice from death without detectable hematopoietic donor chimerism. Transplantation of syngeneic bone marrow cells preserved 100%, transplantation of allogeneic bone marrow cells 33% of mice from death.
Conclusions/Significance
NA-BMCs triggered endogenous hematopoiesis and induced faster recovery compared to bone marrow controls. These findings may be of relevance in the refinement of strategies in the treatment of hematological malignancies. 相似文献
Recent phylogenetic analyses revealed a grade with Ranunculales,Sabiales,Proteales,Trochodendrales,and Buxales as first branching eudicots,with the respective positions of Proteales and Sabiales still ... 相似文献