首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6957篇
  免费   677篇
  国内免费   3篇
  7637篇
  2023年   44篇
  2022年   75篇
  2021年   130篇
  2020年   94篇
  2019年   115篇
  2018年   167篇
  2017年   132篇
  2016年   239篇
  2015年   408篇
  2014年   433篇
  2013年   497篇
  2012年   646篇
  2011年   577篇
  2010年   376篇
  2009年   315篇
  2008年   405篇
  2007年   411篇
  2006年   361篇
  2005年   323篇
  2004年   360篇
  2003年   311篇
  2002年   269篇
  2001年   58篇
  2000年   67篇
  1999年   79篇
  1998年   96篇
  1997年   48篇
  1996年   37篇
  1995年   52篇
  1994年   47篇
  1993年   41篇
  1992年   39篇
  1991年   25篇
  1990年   24篇
  1989年   31篇
  1988年   29篇
  1987年   16篇
  1986年   13篇
  1985年   17篇
  1984年   16篇
  1983年   18篇
  1982年   15篇
  1981年   17篇
  1980年   19篇
  1978年   10篇
  1977年   9篇
  1976年   20篇
  1974年   14篇
  1973年   10篇
  1969年   9篇
排序方式: 共有7637条查询结果,搜索用时 15 毫秒
81.

Purpose

To assess the impact of VA loss on patient reported utilities taking both eyes into account compared to taking only the better or the worse eye into account.

Methods

In this cross-sectional study 1085 patients and 254 controls rated preferences with the generic health-related (EQ-5D; n = 868) and vision-specific (Vision and Quality of Life Index (VisQoL); n = 837) multi-attribute utility instruments (MAUIs). Utilities were calculated for three levels of VA in the better and worse eyes, as well as for 6 different vision states based on combinations of the better and worse eye VA.

Results

Using the VisQoL, utility scores decreased significantly with deteriorating vision in both the better and worse eyes when analysed separately. When stratified by the 6 vision states, VisQoL utilities decreased as VA declined in the worse eye despite stable VA in the better eye. Differences in VisQoL scores were statistically significant for cases where the better eye had no vision impairment and the worse seeing fellow eye had mild, moderate or severe vision impairment. In contrast, the EQ-5D failed to capture changes in better or worse eye VA, or any of the six vision states.

Conclusions

Calculating utilities based only on better eye VA or using a generic MAUI is likely to underestimate the impact of vision impairment, particularly when the better eye has no or little VA loss and the worse eye is moderately to severely visually impaired. These findings have considerable implications for the assessment of overall visual impairment as well as economic evaluations within eye health.  相似文献   
82.
Plant and Soil - Aggressive ruderal plant species pose an increasing problem in anthropically degraded lands. They both affect and are affected by other vegetation and by soil fertility in their...  相似文献   
83.
84.
Increasing evidence shows that hearing loss is a risk factor for tinnitus and hyperacusis. Although both often coincide, a causal relationship between tinnitus and hyperacusis has not been shown. Currently, tinnitus and hyperacusis are assumed to be caused by elevated responsiveness in subcortical circuits. We examined both the impact of different degrees of cochlear damage and the influence of stress priming on tinnitus induction. We used (1) a behavioral animal model for tinnitus designed to minimize stress, (2) ribbon synapses in inner hair cells (IHCs) as a measure for deafferentation, (3) the integrity of auditory brainstem responses (ABR) to detect differences in stimulus-evoked neuronal activity, (4) the expression of the activity-regulated cytoskeletal protein, Arc, to identify long-lasting changes in network activity within the basolateral amygdala (BLA), hippocampal CA1, and auditory cortex (AC), and (5) stress priming to investigate the influence of corticosteroid on trauma-induced brain responses. We observed that IHC ribbon loss (deafferentation) leads to tinnitus when ABR functions remain reduced and Arc is not mobilized in the hippocampal CA1 and AC. If, however, ABR waves are functionally restored and Arc is mobilized, tinnitus does not occur. Both central response patterns were found to be independent of a profound threshold loss and could be shifted by the corticosterone level at the time of trauma. We, therefore, discuss the findings in the context of a history of stress that can trigger either an adaptive or nonadaptive brain response following injury.  相似文献   
85.

Background and aims

Plant traits may characterize functional ecosystem properties and help to predict community responses to environmental change. Since most traits used relate to aboveground plant organs we aim to explore the indicative value of root traits.

Methods

We examined the response of root traits (specific root length [SRL], specific root surface area [SRA], root diameter [RD], root tissue mass density [TMD], root N concentration) in six grassland species (3 grasses, 3 herbs) to four management regimes (low vs. high mowing frequency; no fertilization vs. high NPK fertilization). The replicated experiment in temperate grassland with long continuity simulated the increase in grassland management intensity in the past 50 years in Central Europe.

Results

Increasing mowing frequency (one vs. three cuts per year) led to no significant root trait changes. NPK fertilization resulted in considerable trait shifts with all species responding in the same direction (higher SRL, SRA and N concentration, lower TMD) but at different magnitude. Fertilization-driven increases in SRA were mainly caused by lowered tissue density while root diameter reduction was the main driver of SRL increases.

Conclusion

We conclude that root morphological traits may be used as valuable indicators of environmental change and increasing fertilization in grasslands.  相似文献   
86.
87.
The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic 15N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with 15NO3/14NO3 from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r2 > 0.99). This consisted of a “substrate pool,” which received N from current uptake and supplied the growth zone, and a recycling/mobilizing “store,” which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.This article examines the nitrogen (N) supply system of growing grass leaves, and it investigates how functional and kinetic properties of this system are affected by N stress. The N supply of growing leaves is a dominant target of whole-plant N metabolism. This is primarily related to the high N demand of the photosynthetic apparatus and the related metabolic machinery of new leaves (Evans, 1989; Makino and Osmond, 1991; Grindlay, 1997; Lemaire, 1997; Wright et al., 2004; Johnson et al., 2010; Maire et al., 2012). The N supply system, as defined here, is an integral part of the whole plant: it includes all N compounds that supply leaf growth. Hence, it integrates all events between the uptake of N from the environment (source), intermediate uses in other processes of plant N metabolism, and the eventual delivery to the leaf growth zone (sink; Fig. 1). N that does not ultimately serve leaf growth is not included in this system; all N that serves leaf growth is included, irrespective of its localization in the plant. Conceptually, two distinct sources supply N for leaf growth: N from current uptake and assimilation that is directly transferred to the growing leaf (“directly transferred N”) and N from turnover/redistribution of organic compounds (“mobilized N”).Open in a separate windowFigure 1.Schematic representation of N fluxes in the leaf growth zone and in the N supply system of leaf growth in a grass plant. A, Scheme of a growing leaf, with its growth zone (including zones of cell division, expansion, and maturation) and recently produced tissue (RPT). N import (I; μg h−1) into the growth zone is mostly in the form of amino acids. Inside the growth zone, the nitrogenous substrate is used in new tissue construction. Then, N export (E; μg h−1) is in the form of newly formed, fully expanded nitrogenous tissue (tissue-bound export with RPT) and is calculated as leaf elongation rate (LER; mm h−1) times the lineal density of N in RPT (ρ; μg mm−1): E = LER × ρ (Lattanzi et al., 2004). In a physiological steady state, import equals export (I = E) and the N content of the growth zone (G; μg [not shown]) is constant. Labeled N import into the growth zone (Ilab) commences shortly after labeling of the nutrient solution with 15N. The labeled N content of the growth zone (Glab; μg) increases over time (dGlab/dt) until it eventually reaches isotopic saturation (Fig. 2B). Similarly, the lineal density of labeled N in RPTlab) increases until it approaches ρ. At any time, the export of labeled N in RPT (Elab) equals the concurrent ρlab × LER. The import of labeled N is obtained as Ilab = Elab + dGlab/dt (Lattanzi et al., 2005) and considers the increasing label content in the growth zone during labeling. The fraction of labeled N in the import flux (flab I) is calculated as flab I = Ilab/I. The time course of flab I (Fig. 3) reflects the kinetic properties of the N supply system of leaf growth (C). B, Scheme of a vegetative grass plant (reduced to a rooted tiller with three leaves) with leaf growth zone. N import into the growth zone (I) originates from (1) N taken up from the nutrient solution that is transferred directly to the growth zone following assimilation (directly transferred N) and (2) N derived from turnover/redistribution of stores (mobilized N). The store potentially includes proteins in all mature and senescing tissue in the shoot and root of the entire plant. As xylem, phloem, and associated transfer cells/tissue provide for a vascular network that connects all parts of the plant, the mobilized N may principally originate from any plant tissue that exhibits N turnover/mobilization. The fraction of total N uptake that is allocated to the N supply system of the growth zone equals U (see model in C). The fraction of total mobilized N allocated to the growth zone equals M (see model in C). C, Compartmental model of the source-sink system supplying N to the leaf growth zone, as shown by Lattanzi et al. (2005) and used here. Newly absorbed N (U; μg h−1) enters a substrate pool (Q1); from there, the N is either imported directly into the growth zone (I) or exchanged with a store (Q2). Q1 integrates the steps of transport and assimilation that precede the translocation to the growth zone. Q2 includes all proteins that supply N for leaf growth during their turnover and mobilization. The parameters of the model, including the (relative) size and turnover of pools Q1 and Q2, the deposition into the store (D; μg h−1), and the mobilization from the store (M; μg h−1), and the contribution of direct transfer relative to mobilization to the N supply of the growth zone are obtained by fitting the compartmental model to the flab I data (A) obtained in dynamic 15N labeling experiments (for details, see “Materials and Methods”). During physiological steady state, the sizes of Q1 and Q2 are constant, I = U, and M = D. [See online article for color version of this figure.]Amino acids are the predominant form in which N is supplied for leaf growth in grasses, and incorporation in new leaf tissue occurs mainly in the leaf growth zone (Gastal and Nelson, 1994; Amiard et al., 2004). This is a heterotrophic piece of tissue that includes the zones of cell division and elongation, is located at the base of the leaf, and is encircled by the sheath of the next older leaf (Volenec and Nelson, 1981; MacAdam et al., 1989; Schnyder et al., 1990; Kavanová et al., 2008). As most N is taken up in the form of nitrate but supplied to the growth zone in the form of amino acids, the path of directly transferred N includes a series of metabolic and transport steps. These include transfer to and loading into the xylem, xylem transport and unloading, reduction and ammonium assimilation, cycling through photorespiratory N pools, amino acid synthesis, loading into the phloem, and transport to the growth zone (Hirel and Lea, 2001; Novitskaya et al., 2002; Stitt et al., 2002; Lalonde et al., 2003; Dechorgnat et al., 2011). The time taken to pass through this sequence is unknown at present, as is the effect of N deficiency on that time. Also, it is not known how much N is contained in, and moving through, the different compartments that supply leaf growth with currently assimilated N.At the level of mature organs, mainly leaves, there is considerable knowledge about N turnover and redistribution. Much less is known about the fate of the mobilized N and its actual use in sink tissues like the leaf growth zone. The processes in mature organs are associated with the maintenance metabolism of proteins, organ senescence, and adjustments in leaf protein levels to decreasing irradiance inside growing canopies when leaves become shaded by overtopping newer ones (Evans, 1993; Vierstra, 1993; Hikosaka et al., 1994; Anten et al., 1995; Hirel et al., 2007; Jansson and Thomas, 2008; Moreau et al., 2012). N mobilization in shaded leaves supports the optimization of photosynthetic N use efficiency at plant and canopy scale (Field, 1983; Evans, 1993; Anten et al., 1995), it reduces the respiratory burden of protein maintenance costs (Dewar et al., 1998; Amthor, 2000; Cannell and Thornley, 2000), and it provides a mechanism for the conservation of the most frequently growth-limiting nutrient (Aerts, 1996). Mobilization of N involves protein turnover and net degradation (Huffaker and Peterson, 1974), redistribution in the form of amino acids (Simpson and Dalling, 1981; Simpson et al., 1983; Hörtensteiner and Feller, 2002), and (at least) some of the mobilized N is supplied to new leaf growth (Lattanzi et al., 2005).N fertilizer supply has multiple direct and indirect effects on plant N metabolism (Stitt et al., 2002; Schlüter et al., 2012). In particular, it modifies the N content of newly produced leaves, leaf longevity/senescence, and the dynamics of light distribution inside expanding canopies (Evans, 1983, 1989; Lötscher et al., 2003; Moreau et al., 2012). Thus, N fertilization influences the availability of recyclable N. At the same time, it augments the availability of directly transferable N to leaf growth. The net effect of these factors on the importance of mobilized versus directly transferred N substrate for leaf growth is not known. Also, it is unknown how N fertilization influences the functional characteristics of the N supply system, such as the size and turnover of its component pools.The assessment of the importance of directly transferred versus mobilized N for leaf growth requires studies at the sink end of the system (i.e. investigations of the N import flux into the leaf growth zone). Directly transferred N and mobilized N can be distinguished on the basis of their residence time in the plant, the time between uptake from the environment and import into the leaf growth zone: direct transfer involves a short residence time (fast transfer), whereas mobilized N resides much longer in the plant before it is delivered to the growth zone (slow transfer; De Visser et al., 1997; Lattanzi et al., 2005). Such studies require dynamic labeling of the N taken up by the plant (Schnyder and de Visser, 1999) and monitoring of the rate and isotopic composition/label content of N import into the leaf growth zone (Lattanzi et al., 2005). For grass plants in a physiological steady state, N import and the isotopic composition of the imported N are calculated from the leaf elongation rate and the lineal density of N in newly formed tissue (Fig. 1A; Lattanzi et al., 2004) and the change of tracer content in the leaf growth zone and recently produced leaf tissue over time (Lattanzi et al., 2005). Such data reveal the temporal change of the fraction of labeled N in the N import flux (flab I), which then can be used to characterize the N supply system of leaf growth via compartmental modeling. So far, there is only one study that has partially characterized this system (Lattanzi et al., 2005): this work was conducted with a C3 grass, perennial ryegrass (Lolium perenne), and a C4 grass, Paspalum dilatatum, growing in mixed stands and indicated that two interconnected N pools supplied the leaf growth zone in both species: a “substrate pool” (Q1), which provided a direct route for newly absorbed and assimilated N import into the leaf growth zone (directly transferred N), and a mobilizing “store” (Q2), which supplied N to the leaf growth zone via the substrate pool (Fig. 1C). The relative contribution of mobilization from the store was least important in the fast-growing, dominant individuals and most important in subordinate, shaded individuals. That work did not address the role of N deficiency, and the limited short-term resolution of the study (labeling intervals of 24 h or greater) precluded an analysis of the fast-moving parts of the system.Accordingly, this work addresses the following questions. How does N deficiency influence the substrate supply system of the leaf growth sink in terms of the number, size, and turnover (half-life) of its kinetically distinct pools? How does N deficiency affect the relationship between directly transferred and mobilized N for leaf growth? And what additional insight on the compartmental structure of the supply system is obtained when the short-term resolution of the analysis is increased by 1 order of magnitude? The work was performed with vegetative plants of perennial ryegrass grown in constant conditions with either a low (1.0 mm; termed low N) or high (7.5 mm; high N) nitrate concentration in the nutrient solution. In both treatments, a large number of plants were dynamically labeled with 15N over a wide range of time intervals (2 h to more than 20 d). The import of total N and 15N tracer into growth zones was estimated at the end of each labeling interval. Tracer data were analyzed with compartmental models following principles detailed by Lattanzi et al. (2005, 2012) and Lehmeier et al. (2008) to address the specific questions. Previous articles reported on root and shoot respiration (Lehmeier et al., 2010) and cell division and expansion in leaf growth zones (Kavanová et al., 2008) in the same experiment.  相似文献   
88.
In anoxic environments, methane oxidation is conducted in a syntrophic process between methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). Microbial mats consisting of ANME, SRB and other microorganisms form methane seep-related carbonate buildups in the anoxic bottom waters of the Black Sea Crimean shelf. To shed light on the localization of the biochemical processes at the level of single cells in the Black Sea microbial mats, we applied antibody-based markers for key enzymes of the relevant metabolic pathways. The dissimilatory adenosine-5′-phosphosulfate (APS) reductase, methyl-coenzyme M reductase (MCR) and methanol dehydrogenase (MDH) were selected to localize sulfate respiration, reverse methanogenesis and aerobic methane oxidation, respectively. The key enzymes could be localized by double immunofluorescence and immunocytochemistry at light- and electron microscopic levels. In this study we show that sulfate reduction is conducted synchronized and in direct proximity to reverse methanogenesis of ANME archaea. Microcolonies in interspaces between ANME/SRB express methanol dehydrogenase, which is indicative for oxidation of C1 compounds by methylotrophic or methanotrophic bacteria. Thus, in addition to syntrophic AOM, oxygen-dependent processes are also conducted by a small proportion of the microbial population.  相似文献   
89.
DEAD-box RNA helicases play important roles in remodeling RNA molecules and in facilitating a variety of RNA-protein interactions that are key to many essential cellular processes. In spite of the importance of RNA, our knowledge about RNA helicases is limited. In this study, we investigated the role of the four DEAD-box RNA helicases in the Gram-positive model organism Bacillus subtilis. A strain deleted of all RNA helicases is able to grow at 37°C but not at lower temperatures. The deletion of cshA, cshB, or yfmL in particular leads to cold-sensitive phenotypes. Moreover, these mutant strains exhibit unique defects in ribosome biogenesis, suggesting distinct functions for the individual enzymes in this process. Based on protein accumulation, severity of the cold-sensitive phenotype, and the interaction with components of the RNA degradosome, CshA is the major RNA helicase of B. subtilis. To unravel the functions of CshA in addition to ribosome biogenesis, we conducted microarray analysis and identified the ysbAB and frlBONMD mRNAs as targets that are strongly affected by the deletion of the cshA gene. Our findings suggest that the different helicases make distinct contributions to the physiology of B. subtilis. Ribosome biogenesis and RNA degradation are two of their major tasks in B. subtilis.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号