首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6689篇
  免费   637篇
  国内免费   2篇
  7328篇
  2024年   7篇
  2023年   44篇
  2022年   80篇
  2021年   127篇
  2020年   90篇
  2019年   113篇
  2018年   166篇
  2017年   127篇
  2016年   227篇
  2015年   400篇
  2014年   421篇
  2013年   491篇
  2012年   630篇
  2011年   570篇
  2010年   372篇
  2009年   308篇
  2008年   403篇
  2007年   400篇
  2006年   353篇
  2005年   326篇
  2004年   353篇
  2003年   303篇
  2002年   271篇
  2001年   50篇
  2000年   49篇
  1999年   64篇
  1998年   87篇
  1997年   45篇
  1996年   30篇
  1995年   47篇
  1994年   34篇
  1993年   31篇
  1992年   38篇
  1991年   17篇
  1990年   20篇
  1989年   21篇
  1988年   22篇
  1987年   8篇
  1986年   7篇
  1985年   14篇
  1984年   10篇
  1983年   17篇
  1982年   17篇
  1981年   12篇
  1980年   12篇
  1979年   6篇
  1978年   11篇
  1977年   7篇
  1976年   9篇
  1974年   12篇
排序方式: 共有7328条查询结果,搜索用时 15 毫秒
31.
In this review, we summarise recent studies that purposefully employed dynamic conditions, such as shifts, pulses, ramps and oscillations, for fast physiological strain characterisation and bioprocess development. We show the broad applicability of dynamic conditions and the various objectives that can thereby be investigated in a short time. Dynamic processes reveal information about the analysed system faster than traditional strategies, like continuous cultivations, as process parameters can directly be linked to platform and product parameters. Furthermore, we demonstrate that dynamic operations can result in increased productivity and high product quality, making this strategy a valuable tool for bioprocess development. With this review, we would like to encourage bioprocess engineers to an increased use of dynamic conditions in bioprocess development.  相似文献   
32.
The involvement of chloride in salt stress symptoms and salt tolerance mechanisms in plants has been less investigated in the past. Therefore, we studied the salt-induced chloride influx in Arabidopsis expressing the GFP-based anion indicator Clomeleon. High salt concentrations induce two phases of chloride influx. The fast kinetic phase is likely caused by membrane depolarization, and is assumed to be mediated by channels. This is followed by a slower "saturation" phase, where chloride is accumulated in the cytoplasm. Both phases of chloride uptake are dependent on the presence of external calcium. In general: with high [Ca2+] less chloride is accumulated in the cytoplasm. Surprisingly, also the internal calcium availability has an impact on chloride transport. A complete block of the second phase of chloride influx is achieved by the anion channel blocker A9C and trivalent cations (La3+, Gd3+, and Al3+). Other channel blockers and diuretics were found to inhibit the process partially. The results suggest that several transporter species are involved here, including electroneutral cation-chloride-cotransporters, and a part of chloride possibly enters the cells through cation channels after salt application.  相似文献   
33.

Purpose

Characterization of lacunar infarction (LI) by use of multimodal MRI including diffusion- and perfusion-weighted imaging (DWI, PWI) is difficult because of the small lesion size. Only a few studies evaluated PWI in LI and the results are inconsistent.

Methods

In 16 LI patients who underwent initial MRI within 6 hours after symptom onset and follow-up MRI within 1 week demographics, clinical presentation, and MRI findings were analyzed with special emphasis on DWI and PWI findings. Time to peak maps were classified as showing a normal perfusion pattern or areas of hypoperfusion which were further categorized in mismatch (PWI>DWI), inverse mismatch (PWI<DWI), and match (PWI=DWI). Quantitative perfusion maps were generated and analyzed by use of Signal Processing in NMR-Software (SPIN).

Results

Of the 16 patients (mean age 65.5±12.9 years), 14 (87.5%) were male. Clinical symptoms comprised dysarthria (50%), hemiparesis (81.3%), and hemihypaesthesia (18.8%). Intravenous thrombolysis was performed in 7 (43.8%) patients. Clinical improvement was observed in 12 patients (75 %), while 2 (12.5%) patients showed a deterioration and another 2 (12.5%) a stable course. Acute ischemic lesions (mean volume of 0.46±0.29 cm3) were located in the thalamus (n=8, 50%), internal capsule (n=4, 25%), corona Radiata (n=3, 18.8%) and the mesencephalon (n=1, 6.3%). Circumscribed hypoperfusion (mean volume 0.61±0.48 cm3) was evident in 10 (62.5%) patients. Of these, 3 patients demonstrated a match, 4 an inverse mismatch, and 3 a mismatch between DWI and PWI lesion. Mean CBF and CBV ratios were 0.65±0.28 and 0.84±0.41 respectively. Growth of DWI lesions was observed in 7 (43.8%) and reversal of DWI lesions in 3 (18.8%) patients.

Conclusions

MRI allows identification of different DWI and PWI patterns in LI, including growth and reversal of ischemic lesions. Consequently, it may serve for a better characterization of this stroke subtype and support treatment decisions in daily clinical practice.  相似文献   
34.

Purpose

To assess the impact of VA loss on patient reported utilities taking both eyes into account compared to taking only the better or the worse eye into account.

Methods

In this cross-sectional study 1085 patients and 254 controls rated preferences with the generic health-related (EQ-5D; n = 868) and vision-specific (Vision and Quality of Life Index (VisQoL); n = 837) multi-attribute utility instruments (MAUIs). Utilities were calculated for three levels of VA in the better and worse eyes, as well as for 6 different vision states based on combinations of the better and worse eye VA.

Results

Using the VisQoL, utility scores decreased significantly with deteriorating vision in both the better and worse eyes when analysed separately. When stratified by the 6 vision states, VisQoL utilities decreased as VA declined in the worse eye despite stable VA in the better eye. Differences in VisQoL scores were statistically significant for cases where the better eye had no vision impairment and the worse seeing fellow eye had mild, moderate or severe vision impairment. In contrast, the EQ-5D failed to capture changes in better or worse eye VA, or any of the six vision states.

Conclusions

Calculating utilities based only on better eye VA or using a generic MAUI is likely to underestimate the impact of vision impairment, particularly when the better eye has no or little VA loss and the worse eye is moderately to severely visually impaired. These findings have considerable implications for the assessment of overall visual impairment as well as economic evaluations within eye health.  相似文献   
35.

Background and aims

Plant traits may characterize functional ecosystem properties and help to predict community responses to environmental change. Since most traits used relate to aboveground plant organs we aim to explore the indicative value of root traits.

Methods

We examined the response of root traits (specific root length [SRL], specific root surface area [SRA], root diameter [RD], root tissue mass density [TMD], root N concentration) in six grassland species (3 grasses, 3 herbs) to four management regimes (low vs. high mowing frequency; no fertilization vs. high NPK fertilization). The replicated experiment in temperate grassland with long continuity simulated the increase in grassland management intensity in the past 50 years in Central Europe.

Results

Increasing mowing frequency (one vs. three cuts per year) led to no significant root trait changes. NPK fertilization resulted in considerable trait shifts with all species responding in the same direction (higher SRL, SRA and N concentration, lower TMD) but at different magnitude. Fertilization-driven increases in SRA were mainly caused by lowered tissue density while root diameter reduction was the main driver of SRL increases.

Conclusion

We conclude that root morphological traits may be used as valuable indicators of environmental change and increasing fertilization in grasslands.  相似文献   
36.
The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic 15N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with 15NO3/14NO3 from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r2 > 0.99). This consisted of a “substrate pool,” which received N from current uptake and supplied the growth zone, and a recycling/mobilizing “store,” which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks.This article examines the nitrogen (N) supply system of growing grass leaves, and it investigates how functional and kinetic properties of this system are affected by N stress. The N supply of growing leaves is a dominant target of whole-plant N metabolism. This is primarily related to the high N demand of the photosynthetic apparatus and the related metabolic machinery of new leaves (Evans, 1989; Makino and Osmond, 1991; Grindlay, 1997; Lemaire, 1997; Wright et al., 2004; Johnson et al., 2010; Maire et al., 2012). The N supply system, as defined here, is an integral part of the whole plant: it includes all N compounds that supply leaf growth. Hence, it integrates all events between the uptake of N from the environment (source), intermediate uses in other processes of plant N metabolism, and the eventual delivery to the leaf growth zone (sink; Fig. 1). N that does not ultimately serve leaf growth is not included in this system; all N that serves leaf growth is included, irrespective of its localization in the plant. Conceptually, two distinct sources supply N for leaf growth: N from current uptake and assimilation that is directly transferred to the growing leaf (“directly transferred N”) and N from turnover/redistribution of organic compounds (“mobilized N”).Open in a separate windowFigure 1.Schematic representation of N fluxes in the leaf growth zone and in the N supply system of leaf growth in a grass plant. A, Scheme of a growing leaf, with its growth zone (including zones of cell division, expansion, and maturation) and recently produced tissue (RPT). N import (I; μg h−1) into the growth zone is mostly in the form of amino acids. Inside the growth zone, the nitrogenous substrate is used in new tissue construction. Then, N export (E; μg h−1) is in the form of newly formed, fully expanded nitrogenous tissue (tissue-bound export with RPT) and is calculated as leaf elongation rate (LER; mm h−1) times the lineal density of N in RPT (ρ; μg mm−1): E = LER × ρ (Lattanzi et al., 2004). In a physiological steady state, import equals export (I = E) and the N content of the growth zone (G; μg [not shown]) is constant. Labeled N import into the growth zone (Ilab) commences shortly after labeling of the nutrient solution with 15N. The labeled N content of the growth zone (Glab; μg) increases over time (dGlab/dt) until it eventually reaches isotopic saturation (Fig. 2B). Similarly, the lineal density of labeled N in RPTlab) increases until it approaches ρ. At any time, the export of labeled N in RPT (Elab) equals the concurrent ρlab × LER. The import of labeled N is obtained as Ilab = Elab + dGlab/dt (Lattanzi et al., 2005) and considers the increasing label content in the growth zone during labeling. The fraction of labeled N in the import flux (flab I) is calculated as flab I = Ilab/I. The time course of flab I (Fig. 3) reflects the kinetic properties of the N supply system of leaf growth (C). B, Scheme of a vegetative grass plant (reduced to a rooted tiller with three leaves) with leaf growth zone. N import into the growth zone (I) originates from (1) N taken up from the nutrient solution that is transferred directly to the growth zone following assimilation (directly transferred N) and (2) N derived from turnover/redistribution of stores (mobilized N). The store potentially includes proteins in all mature and senescing tissue in the shoot and root of the entire plant. As xylem, phloem, and associated transfer cells/tissue provide for a vascular network that connects all parts of the plant, the mobilized N may principally originate from any plant tissue that exhibits N turnover/mobilization. The fraction of total N uptake that is allocated to the N supply system of the growth zone equals U (see model in C). The fraction of total mobilized N allocated to the growth zone equals M (see model in C). C, Compartmental model of the source-sink system supplying N to the leaf growth zone, as shown by Lattanzi et al. (2005) and used here. Newly absorbed N (U; μg h−1) enters a substrate pool (Q1); from there, the N is either imported directly into the growth zone (I) or exchanged with a store (Q2). Q1 integrates the steps of transport and assimilation that precede the translocation to the growth zone. Q2 includes all proteins that supply N for leaf growth during their turnover and mobilization. The parameters of the model, including the (relative) size and turnover of pools Q1 and Q2, the deposition into the store (D; μg h−1), and the mobilization from the store (M; μg h−1), and the contribution of direct transfer relative to mobilization to the N supply of the growth zone are obtained by fitting the compartmental model to the flab I data (A) obtained in dynamic 15N labeling experiments (for details, see “Materials and Methods”). During physiological steady state, the sizes of Q1 and Q2 are constant, I = U, and M = D. [See online article for color version of this figure.]Amino acids are the predominant form in which N is supplied for leaf growth in grasses, and incorporation in new leaf tissue occurs mainly in the leaf growth zone (Gastal and Nelson, 1994; Amiard et al., 2004). This is a heterotrophic piece of tissue that includes the zones of cell division and elongation, is located at the base of the leaf, and is encircled by the sheath of the next older leaf (Volenec and Nelson, 1981; MacAdam et al., 1989; Schnyder et al., 1990; Kavanová et al., 2008). As most N is taken up in the form of nitrate but supplied to the growth zone in the form of amino acids, the path of directly transferred N includes a series of metabolic and transport steps. These include transfer to and loading into the xylem, xylem transport and unloading, reduction and ammonium assimilation, cycling through photorespiratory N pools, amino acid synthesis, loading into the phloem, and transport to the growth zone (Hirel and Lea, 2001; Novitskaya et al., 2002; Stitt et al., 2002; Lalonde et al., 2003; Dechorgnat et al., 2011). The time taken to pass through this sequence is unknown at present, as is the effect of N deficiency on that time. Also, it is not known how much N is contained in, and moving through, the different compartments that supply leaf growth with currently assimilated N.At the level of mature organs, mainly leaves, there is considerable knowledge about N turnover and redistribution. Much less is known about the fate of the mobilized N and its actual use in sink tissues like the leaf growth zone. The processes in mature organs are associated with the maintenance metabolism of proteins, organ senescence, and adjustments in leaf protein levels to decreasing irradiance inside growing canopies when leaves become shaded by overtopping newer ones (Evans, 1993; Vierstra, 1993; Hikosaka et al., 1994; Anten et al., 1995; Hirel et al., 2007; Jansson and Thomas, 2008; Moreau et al., 2012). N mobilization in shaded leaves supports the optimization of photosynthetic N use efficiency at plant and canopy scale (Field, 1983; Evans, 1993; Anten et al., 1995), it reduces the respiratory burden of protein maintenance costs (Dewar et al., 1998; Amthor, 2000; Cannell and Thornley, 2000), and it provides a mechanism for the conservation of the most frequently growth-limiting nutrient (Aerts, 1996). Mobilization of N involves protein turnover and net degradation (Huffaker and Peterson, 1974), redistribution in the form of amino acids (Simpson and Dalling, 1981; Simpson et al., 1983; Hörtensteiner and Feller, 2002), and (at least) some of the mobilized N is supplied to new leaf growth (Lattanzi et al., 2005).N fertilizer supply has multiple direct and indirect effects on plant N metabolism (Stitt et al., 2002; Schlüter et al., 2012). In particular, it modifies the N content of newly produced leaves, leaf longevity/senescence, and the dynamics of light distribution inside expanding canopies (Evans, 1983, 1989; Lötscher et al., 2003; Moreau et al., 2012). Thus, N fertilization influences the availability of recyclable N. At the same time, it augments the availability of directly transferable N to leaf growth. The net effect of these factors on the importance of mobilized versus directly transferred N substrate for leaf growth is not known. Also, it is unknown how N fertilization influences the functional characteristics of the N supply system, such as the size and turnover of its component pools.The assessment of the importance of directly transferred versus mobilized N for leaf growth requires studies at the sink end of the system (i.e. investigations of the N import flux into the leaf growth zone). Directly transferred N and mobilized N can be distinguished on the basis of their residence time in the plant, the time between uptake from the environment and import into the leaf growth zone: direct transfer involves a short residence time (fast transfer), whereas mobilized N resides much longer in the plant before it is delivered to the growth zone (slow transfer; De Visser et al., 1997; Lattanzi et al., 2005). Such studies require dynamic labeling of the N taken up by the plant (Schnyder and de Visser, 1999) and monitoring of the rate and isotopic composition/label content of N import into the leaf growth zone (Lattanzi et al., 2005). For grass plants in a physiological steady state, N import and the isotopic composition of the imported N are calculated from the leaf elongation rate and the lineal density of N in newly formed tissue (Fig. 1A; Lattanzi et al., 2004) and the change of tracer content in the leaf growth zone and recently produced leaf tissue over time (Lattanzi et al., 2005). Such data reveal the temporal change of the fraction of labeled N in the N import flux (flab I), which then can be used to characterize the N supply system of leaf growth via compartmental modeling. So far, there is only one study that has partially characterized this system (Lattanzi et al., 2005): this work was conducted with a C3 grass, perennial ryegrass (Lolium perenne), and a C4 grass, Paspalum dilatatum, growing in mixed stands and indicated that two interconnected N pools supplied the leaf growth zone in both species: a “substrate pool” (Q1), which provided a direct route for newly absorbed and assimilated N import into the leaf growth zone (directly transferred N), and a mobilizing “store” (Q2), which supplied N to the leaf growth zone via the substrate pool (Fig. 1C). The relative contribution of mobilization from the store was least important in the fast-growing, dominant individuals and most important in subordinate, shaded individuals. That work did not address the role of N deficiency, and the limited short-term resolution of the study (labeling intervals of 24 h or greater) precluded an analysis of the fast-moving parts of the system.Accordingly, this work addresses the following questions. How does N deficiency influence the substrate supply system of the leaf growth sink in terms of the number, size, and turnover (half-life) of its kinetically distinct pools? How does N deficiency affect the relationship between directly transferred and mobilized N for leaf growth? And what additional insight on the compartmental structure of the supply system is obtained when the short-term resolution of the analysis is increased by 1 order of magnitude? The work was performed with vegetative plants of perennial ryegrass grown in constant conditions with either a low (1.0 mm; termed low N) or high (7.5 mm; high N) nitrate concentration in the nutrient solution. In both treatments, a large number of plants were dynamically labeled with 15N over a wide range of time intervals (2 h to more than 20 d). The import of total N and 15N tracer into growth zones was estimated at the end of each labeling interval. Tracer data were analyzed with compartmental models following principles detailed by Lattanzi et al. (2005, 2012) and Lehmeier et al. (2008) to address the specific questions. Previous articles reported on root and shoot respiration (Lehmeier et al., 2010) and cell division and expansion in leaf growth zones (Kavanová et al., 2008) in the same experiment.  相似文献   
37.
DEAD-box RNA helicases play important roles in remodeling RNA molecules and in facilitating a variety of RNA-protein interactions that are key to many essential cellular processes. In spite of the importance of RNA, our knowledge about RNA helicases is limited. In this study, we investigated the role of the four DEAD-box RNA helicases in the Gram-positive model organism Bacillus subtilis. A strain deleted of all RNA helicases is able to grow at 37°C but not at lower temperatures. The deletion of cshA, cshB, or yfmL in particular leads to cold-sensitive phenotypes. Moreover, these mutant strains exhibit unique defects in ribosome biogenesis, suggesting distinct functions for the individual enzymes in this process. Based on protein accumulation, severity of the cold-sensitive phenotype, and the interaction with components of the RNA degradosome, CshA is the major RNA helicase of B. subtilis. To unravel the functions of CshA in addition to ribosome biogenesis, we conducted microarray analysis and identified the ysbAB and frlBONMD mRNAs as targets that are strongly affected by the deletion of the cshA gene. Our findings suggest that the different helicases make distinct contributions to the physiology of B. subtilis. Ribosome biogenesis and RNA degradation are two of their major tasks in B. subtilis.  相似文献   
38.
39.
Morphology has traditionally been used to diagnose the taxa of various taxonomic ranks. However, there is growing evidence that morphology is not always able to reveal cryptic taxa, and that pronounced morphological variation could reflect phenotypic plasticity rather than evolutionary divergence. Spur‐thighed tortoises (the Testudo graeca complex), distributed in the western Palaearctic region, are characterized by high morphological variability and complicated taxonomy, which are under debate. Previous molecular studies using mainly mitochondrial DNA (mtDNA) sequences have revealed incongruence between genetic differentiation and morphology‐based taxonomy, suggesting that morphological variability is the result of phenotypic plasticity and stabilizing selection, which masks the true genealogies. In the present study, we used a range‐wide sampling and nuclear Amplified fragment length polymorphism (AFLP) markers to investigate genetic differentiation within the T. graeca complex. We found that spur‐thighed tortoises are differentiated into four geographically well‐defined AFLP groups: Balkans–Middle Eastern, western Mediterranean, Caucasian and central‐eastern Iranian. Compared with the distribution of mtDNA lineages, the groups are largely concordant, although the AFLP markers are less sensitive and distinguish fewer groups than do mtDNA sequences. The AFLP groups show an allopatric or parapatric distribution. The AFLP differentiation conflicts with the previously proposed morphology‐based taxonomy of the complex, suggesting that local adaptation to different environmental conditions may have led to the great extent of morphological variation within the same lineages. We propose a re‐evaluation of the taxa that were confirmed genetically using a thorough morphological analysis corrected for phenotypic plasticity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ●● , ●●–●●.  相似文献   
40.
Bromeliads are a conspicuous component of tropical forests. Whereas several amphibian species are closely associated with bromeliads, reptiles are much less frequently observed in bromeliads and only a few species use bromeliads for egg deposition or as roost site. We report on an adult Urostrophus vautieri that was sleeping in a water-filled bromeliad. The individual was submerged except for head and shoulder. To our knowledge, it is the first time that such behavior has been observed in an arboreal Neotropical lizard.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号