首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7433篇
  免费   743篇
  国内免费   6篇
  8182篇
  2023年   46篇
  2022年   82篇
  2021年   135篇
  2020年   95篇
  2019年   118篇
  2018年   176篇
  2017年   135篇
  2016年   247篇
  2015年   417篇
  2014年   438篇
  2013年   512篇
  2012年   667篇
  2011年   596篇
  2010年   385篇
  2009年   321篇
  2008年   439篇
  2007年   422篇
  2006年   379篇
  2005年   351篇
  2004年   379篇
  2003年   327篇
  2002年   285篇
  2001年   80篇
  2000年   82篇
  1999年   93篇
  1998年   97篇
  1997年   48篇
  1996年   37篇
  1995年   58篇
  1994年   43篇
  1993年   39篇
  1992年   55篇
  1991年   40篇
  1990年   48篇
  1989年   44篇
  1988年   35篇
  1987年   23篇
  1986年   25篇
  1985年   21篇
  1984年   27篇
  1983年   26篇
  1982年   20篇
  1981年   18篇
  1980年   16篇
  1979年   24篇
  1978年   25篇
  1977年   20篇
  1976年   17篇
  1974年   27篇
  1972年   18篇
排序方式: 共有8182条查询结果,搜索用时 15 毫秒
91.
The Penicillium chrysogenum antifungal protein PAF inhibits polar growth and induces apoptosis in Aspergillus nidulans. We report here that two signalling cascades are implicated in its antifungal activity. PAF activates the cAMP/protein kinase A (Pka) signalling cascade. A pkaA deletion mutant exhibited reduced sensitivity towards PAF. This was substantiated by the use of pharmacological modulators: PAF aggravated the effect of the activator 8‐Br‐cAMP and partially relieved the repressive activity of caffeine. Furthermore, the Pkc/mitogen‐activated protein kinase (Mpk) signalling cascade mediated basal resistance to PAF, which was independent of the small GTPase RhoA. Non‐functional mutations of both genes resulted in hypersensitivity towards PAF. PAF did not increase MpkA phosphorylation or induce enzymes involved in the remodelling of the cell wall, which normally occurs in response to activators of the cell wall integrity pathway. Notably, PAF exposure resulted in actin gene repression and a deregulation of the chitin deposition at hyphal tips of A. nidulans, which offers an explanation for the morphological effects evoked by PAF and which could be attributed to the interconnection of the two signalling pathways. Thus, PAF represents an excellent tool to study signalling pathways in this model organism and to define potential fungal targets to develop new antifungals.  相似文献   
92.
93.
The members of the RCK family of cloned voltage-dependent K+ channels are quite homologous in primary structure, but they are highly diverse in functional properties. RCK4 channels differ from RCK1 and RCK2 channels in inactivation and permeation properties, the sensitivity to external TEA, and to current modulation by external K+ ions. Here we show several other interesting differences: While RCK1 and RCK2 are blocked in a voltage and concentration dependent manner by internal Mg2+ ions, RCK4 is only weakly blocked at very high potentials. The single-channel current-voltage relations of RCK4 are rather linear while RCK2 exhibits an inwardly rectifying single-channel current in symmetrical K+ solutions. The deactivation of the channels, measured by tail current protocols, is faster in RCK4 by a factor of two compared with RCK2. In a search for the structural motif responsible for these differences, point mutants creating homology between RCK2 and RCK4 in the pore region were tested. The single-point mutant K533Y in the background of RCK4 conferred the properties of Mg2+ block, tail current kinetics, and inward ion permeation of RCK2 to RCK4. This mutant was previously shown to be responsible for the alterations in external TEA sensitivity and channel regulation by external K+ ions. Thus, this residue is expected to be located at the external side of the pore entrance. The data are consistent with the idea that the mutation alters the channel occupancy by K+ and thereby indirectly affects internal Mg2+ block and channel closing.Abbreviations TEA tetraethylammonium - EGTA Ethylene glycol-bis (-aminoethyl ether) N,N,N,N-tetraacetic acid - 2S3B model 2-site 3-barrier model Correspondence to: S. H. Heinemann  相似文献   
94.
Summary Leaf and bark structure of a birch clone (Betula pendula Roth) continuously exposed to charcoal-filtered air or charcoal-filtered air plus ozone (0.05, 0.075, 0.1 l 1-1) was investigated throughout one growing season. Increasing ozone dose influenced leaf differentiation by reducing leaf area and increasing inner leaf air space, density of cells developing into stomata, scales and hairs. When approximately the same ozone dose had been reached, macroscopical and microscopical symptoms appeared irrespective of the ozone concentration used during treatment. Structural decline began in mesophyll cells around stomatal cavities (droplet-like exudates on the cell walls), continued with disintegration of the cytoplasma and ended in cell collapse. Epidermal cells showed shrinkage of the mucilaginous layer (related to water loss). Their collapse marked the final stage of leaf decline. When subsidiary cells collapsed, guard cells passively opened for a transitory period before collapsing and closing. With increasing ozone dose starch remained accumulated along the small leaf veins and in guard cells. IIK-positive grains were formed in the epidermal cells. This contrasted with the senescent leaves, where starch was entirely retranslocated. Injury symptoms in stem and petiole proceeded from the epidermis to the cambium. Reduced tissue area indicated reduced cambial activity. In plants grown in filtered air and transferred into ozone on 20 August, injury symptoms developed faster than in leaves formed in the presence of ozone. Results are discussed with regard to O3-caused acclimation and injury mechanisms.  相似文献   
95.
In a recent Perspective, Stahlhut et al. (2012) argued that potential Wolbachia-induced effects on inheritance patterns of mitochondrial DNA do not significantly affect DNA barcoding efforts. Since this hypothesis can be readily tested, we suggest to do so by including multiple, nuclear markers in DNA barcoding studies.  相似文献   
96.
Safety issues caused by the metallic lithium inside a battery represent one of the main reasons for the lack of commercial availability of rechargeable lithium‐metal batteries. The advantage of anodes based on coated lithium powder (CLiP), compared to plain lithium foil, include the suppression of dendrite formation, as the local current density during stripping/plating is reduced due to the higher surface area. Another performance and safety advantage of lithium powder is the precisely controlled mass loading of the lithium anode during electrode preparation, giving the opportunity to avoid Li excess in the cell. As an additional benefit, the coating makes electrode manufacturing safer and eases handling. Here, electrodes based on coated lithium powder electrodes (CLiP) are introduced for application in lithium‐metal batteries. These electrodes are compared to lithium foil electrodes with respect to cycling stability, coulombic efficiency of lithium stripping/plating, overpotential, and morphology changes during cycling.  相似文献   
97.
The effects of thioura and of several substituted thioureas–phenylthiourea, α-naphtylthiourea, metiamide, and burimamide–on dynein ATPase have been studied. The substituted thioureas are over 30 times more potent than thiourea in causing enhancement of 30S dynein ATPase activity and inhibition of 14S dynein ATPase activity. The effects of thiourea and phenylthiourea can be prevented by very low concentrations of β-mercaptoethanol or dithiotheritol. Axonemal ATPase is also enhanced by the thioureas, but the reaction proceeds more slowly than for solubilized 30S dynein. Enhancement of 30S dynein ATPase by metiamide is prevented by low (~ 1 μM) concentrations of ATP and, less effectively, by AMP-PNP, but not by AMP-PCP even though the latter is a stronger inhibitor of 30S dynein ATPase than is AMP-PNP. The thioureas inhibit the ATP-induced decrease in turbidity (measured as ΔA350) of axonemal suspensions. Inhibition of the turbidity response is also prevented by low concentrations of β-mercaptoethanol, but, in contrast to the irreversible enhancement of ATPase activity, inhibition of the turbidity response is largely reversible. The ability of 30S dynein to rebind onto twice extracted axonemes is not changed by treatment with phenylthiourea or metiamide. These observations indicate that the thioureas react with at least two sets of SH or S–S groups on axonemes. Reaction with the group(s) on the 30S dynein causes an apparently irreversible enhancement of ATPase activity. Reaction with another group(s) causes a reversible inhibition of the turbidity response.  相似文献   
98.
Calcareous grasslands belong to the most diverse, endangered habitats in Europe, but there is still insufficient information about the origin of the plant species related to these grasslands. In order to illuminate this question, we chose for our study the representative grassland species Hippocrepis comosa (Horseshoe vetch). Based on species distribution modeling and molecular markers, we identified the glacial refugia and the postglacial migration routes of the species to Central Europe. We clearly demonstrate that H. comosa followed a latitudinal and due to its oceanity also a longitudinal gradient during the last glacial maximum (LGM), restricting the species to southern refugia situated on the Peninsulas of Iberia, the Balkans, and Italy during the last glaciation. However, we also found evidence for cryptic northern refugia in the UK, the Alps, and Central Germany. Both species distribution modeling and molecular markers underline that refugia of temperate, oceanic species such as H. comosa must not be exclusively located in southern but also in western of parts of Europe. The analysis showed a distinct separation of the southern refugia into a western cluster embracing Iberia and an eastern group including the Balkans and Italy, which determined the postglacial recolonization of Central Europe. At the end of the LGM, H. comosa seems to have expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, and Germany.  相似文献   
99.
Temperature variation is an important factor determining the outcomes of interspecific interactions, including those involving hosts and parasites. This can apply to variation in average temperature or to relatively short but intense bouts of extreme temperature. We investigated the effect of heat shock on the ability of aphids (Aphis fabae) harbouring protective facultative endosymbionts (Hamiltonella defensa) to resist parasitism by Hymenopteran parasitoids (Lysiphlebus fabarum). Furthermore, we investigated whether heat shocks can modify previously observed genotype-by-genotype (G x G) interactions between different endosymbiont isolates and parasitoid genotypes. Lines of genetically identical aphids possessing different isolates of H. defensa were exposed to one of two heat shock regimes (35°C and 39°C) or to a control temperature (20°C) before exposure to three different asexual lines of the parasitoids. We observed strong G x G interactions on parasitism rates, reflecting the known genetic specificity of symbiont-conferred resistance, and we observed a significant G x G x E interaction induced by heat shocks. However, this three-way interaction was mainly driven by the more extreme heat shock (39°C), which had devastating effects on aphid lifespan and reproduction. Restricting the analysis to the more realistic heat shock of 35°C, the G x G x E interaction was weaker (albeit still significant), and it did not lead to any reversals of the aphid lines'' susceptibility rankings to different parasitoids. Thus, under conditions feasibly encountered in the field, the relative fitness of different parasitoid genotypes on hosts protected by particular symbiont strains remains mostly uncomplicated by heat stress, which should simplify biological control programs dealing with this system.  相似文献   
100.
Powdery mildew is a fungal disease that affects a wide range of plants and reduces crop yield worldwide. As obligate biotrophs, powdery mildew fungi manipulate living host cells to suppress defence responses and to obtain nutrients. Members of the plant order Brassicales produce indole glucosinolates that effectively protect them from attack by non-adapted fungi. Indol-3-ylmethyl glucosinolate is constitutively produced in the phloem and transported to epidermal cells for storage. Upon attack, indol-3-ylmethyl glucosinolate is activated by CYP81F2 to provide broad-spectrum defence against fungi. How de novo biosynthesis and transport contribute to defence of powdery mildew-attacked epidermal cells is unknown. Bioassays and glucosinolate analysis demonstrate that GTR glucosinolate transporters are not involved in antifungal defence. Using quantitative live-cell imaging of fluorophore-tagged markers, we show that accumulation of the glucosinolate biosynthetic enzymes CYP83B1 and SUR1 is induced in epidermal cells attacked by the non-adapted barley powdery mildew Blumeria graminis f.sp. hordei. By contrast, glucosinolate biosynthesis is attenuated during interaction with the virulent powdery mildew Golovinomyces orontii. Interestingly, SUR1 induction is delayed during the Golovinomyces orontii interaction. We conclude that epidermal de novo synthesis of indol-3-ylmethyl glucosinolate contributes to CYP81F2-mediated broad-spectrum antifungal resistance and that adapted powdery mildews may target this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号