首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6447篇
  免费   609篇
  国内免费   2篇
  2024年   4篇
  2023年   38篇
  2022年   66篇
  2021年   123篇
  2020年   90篇
  2019年   112篇
  2018年   163篇
  2017年   127篇
  2016年   225篇
  2015年   394篇
  2014年   413篇
  2013年   480篇
  2012年   615篇
  2011年   558篇
  2010年   359篇
  2009年   303篇
  2008年   393篇
  2007年   388篇
  2006年   342篇
  2005年   308篇
  2004年   343篇
  2003年   288篇
  2002年   255篇
  2001年   47篇
  2000年   47篇
  1999年   58篇
  1998年   84篇
  1997年   43篇
  1996年   29篇
  1995年   46篇
  1994年   32篇
  1993年   31篇
  1992年   37篇
  1991年   20篇
  1990年   16篇
  1989年   18篇
  1988年   22篇
  1987年   8篇
  1986年   8篇
  1985年   12篇
  1984年   9篇
  1983年   14篇
  1982年   11篇
  1981年   10篇
  1980年   11篇
  1979年   4篇
  1978年   8篇
  1977年   4篇
  1976年   9篇
  1974年   10篇
排序方式: 共有7058条查询结果,搜索用时 31 毫秒
241.
A series of experiments has been undertaken to study the phenomenon of band inversion that can occur during the separation of linear double-stranded DNA in agarose gels under constant electric field. We found that there can be a considerable band inversion when the DNA fragments are moving as a single species. When separating mixtures of fragments, as it is usually done in routine experiments, the band inversion effect is strongly reduced. Our data support the assumption that DNA–DNA interactions can play an important role in electrophoretic separations. © 1995 John Wiley & Sons, Inc.  相似文献   
242.
BackgroundReagent strip to detect microhematuria as a proxy for Schistosoma haematobium infections has been considered an alternative to urine filtration for individual diagnosis and community-based estimates of treatment needs for preventive chemotherapy. However, the diagnostic accuracy of reagent strip needs further investigation, particularly at low infection intensity levels.MethodsWe used existing data from a study conducted in Tanzania that employed urine filtration and reagent strip testing for S. haematobium in two villages, including a baseline and six follow-up surveys after praziquantel treatment representing a wide range of infection prevalence. We developed a Bayesian model linking individual S. haematobium egg count data based on urine filtration to reagent strip binary test results available on multiple days and estimated the relation between infection intensity and sensitivity of reagent strip. Furthermore, we simulated data from 3,000 hypothetical populations with varying mean infection intensity to infer on the relation between prevalence observed by urine filtration and the interpretation of reagent strip readings.Principal findingsReagent strip showed excellent sensitivity even for single measurement reaching 100% at around 15 eggs of S. haematobium per 10 ml of urine when traces on reagent strip were considered positive. The corresponding specificity was 97%. When traces were considered negative, the diagnostic accuracy of the reagent strip was equivalent to urine filtration data obtained on a single day. A 10% and 50% urine filtration prevalence based on a single day sampling corresponds to 11.2% and 48.6% prevalence by reagent strip, respectively, when traces were considered negative, and 17.6% and 57.7%, respectively, when traces were considered positive.Conclusions/SignificanceTrace results should be included in reagent strip readings when high sensitivity is required, but excluded when high specificity is needed. The observed prevalence of reagent strip results, when traces are considered negative, is a good proxy for prevalence estimates of S. haematobium infection by urine filtration on a single day.  相似文献   
243.
The Reelin signaling cascade plays a crucial role in the correct positioning of neurons during embryonic brain development. Reelin binding to apolipoprotein E receptor 2 (ApoER2) and very-low-density-lipoprotein receptor (VLDLR) leads to phosphorylation of disabled 1 (Dab1), an adaptor protein which associates with the intracellular domains of both receptors. Coreceptors for Reelin have been postulated to be necessary for Dab1 phosphorylation. We show that bivalent agents specifically binding to ApoER2 or VLDLR are sufficient to mimic the Reelin signal. These agents induce Dab1 phosphorylation, activate members of the Src family of nonreceptor tyrosine kinases, modulate protein kinase B/Akt phosphorylation, and increase long-term potentiation in hippocampal slices. Induced dimerization of Dab1 in HEK293 cells leads to its phosphorylation even in the absence of Reelin receptors. The mechanism for and the sites of these phosphorylations are identical to those effected by Reelin in primary neurons. These results suggest that binding of Reelin, which exists as a homodimer in vivo, to ApoER2 and VLDLR induces clustering of ApoER2 and VLDLR. As a consequence, Dab1 becomes dimerized or oligomerized on the cytosolic side of the plasma membrane, constituting the active substrate for the kinase; this process seems to be sufficient to transmit the signal and does not appear to require any coreceptor.  相似文献   
244.
Significant knowledge about glucocorticoid signaling has accumulated, yet many aspects remain unknown. We aimed to discover novel factors involved in glucocorticoid receptor regulation that do not necessarily require direct receptor interaction. We achieved this by using a functional genetic screen: a stable cell line which cannot survive hormone treatment was engineered, randomly mutated, and selected in the presence of glucocorticoid. A hormone-resistant clone was analyzed by two-dimensional gel electrophoresis. Differentially expressed proteins were identified and tested as candidates for regulation of the glucocorticoid receptor. An unexpected candidate, cofilin 1, inhibited receptor activity. Cofilin is known to promote actin depolymerization and filament severing. Several experiments suggest that this feature of cofilin is involved in its inhibitory action. Both its actin depolymerization activity and its inhibitory action on the receptor are dependent on its phosphorylation state. Treatment of cells with a cytoskeleton-disrupting agent decreased receptor activity, as did overexpression of actin, particularly a mutant actin that does not polymerize. In addition, overexpression of cofilin and actin as well as chemical cytoskeleton disruption changed the subcellular receptor distribution and upregulated c-Jun, which could constitute the inhibitory mechanism of cofilin. In summary, cofilin represents a novel factor that can cause glucocorticoid resistance.  相似文献   
245.
246.
N(alpha) acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required NatA acetylation for its role in telomeric silencing. NatA functioned genetically through the ORC binding site of the HMR-E silencer. Furthermore, tethering Orc1p directly to the silencer circumvented the requirement for NatA in silencing. Orc1p was N(alpha) acetylated in vivo by NatA. Mutations that abrogated its ability to be acetylated caused strong telomeric derepression. Thus, N(alpha) acetylation of Orc1p represents a protein modification that modulates chromatin function in S. cerevisiae. Genetic evidence further supported a functional link between NatA and ORC: (i) nat1Delta was synthetically lethal with orc2-1 and (ii) the synthetic lethality between nat1Delta and SUM1-1 required the Orc1 N terminus. We also found Sir3p to be acetylated by NatA. In summary, we propose a model by which N(alpha) acetylation is required for the binding of silencing factors to the N terminus of Orc1p and Sir3p to recruit heterochromatic factors and establish repression.  相似文献   
247.
Centromeres form specialized chromatin structures termed kinetochores which are required for accurate segregation of chromosomes. DNA lesions might disrupt protein-DNA interactions, thereby compromising segregation and genome stability. We show that yeast centromeres are heavily resistant to removal of UV-induced DNA lesions by two different repair systems, photolyase and nucleotide excision repair. Repair resistance persists in G(1)- and G(2)/M-arrested cells. Efficient repair was obtained only by disruption of the kinetochore structure in a ndc10-1 mutant, but not in cse4-1 and cbf1 Delta mutants. Moreover, UV photofootprinting and DNA repair footprinting showed that centromere proteins cover about 120 bp of the centromere elements CDEII and CDEIII, including 20 bp of flanking CDEIII. Thus, DNA lesions do not appear to disrupt protein-DNA interactions in the centromere. Maintaining a stable kinetochore structure seems to be more important for the cell than immediate removal of DNA lesions. It is conceivable that centromeres are repaired by postreplication repair pathways.  相似文献   
248.
249.
250.
Autosomal recessive spinal muscular atrophy with respiratory distress type 1 (SMARD1) is caused by mutations in the immunoglobulin -binding protein 2 (IGHMBP2) gene. Patients affected by the infantile form of SMARD1 present with early onset respiratory distress. So far, patients with neither juvenile onset nor with larger deletions/rearrangements in IGHMBP2 have been reported. In this study, we investigated one patient with infantile (4 months) and another with juvenile (4.3 years) onset of respiratory distress. Direct sequencing of all exons and flanking intron sequences in both patients revealed a mutation on only one allele. In both patients, we identified genomic rearrangements of the other allele of IGHMBP2 by means of Southern blotting. Putative breakpoints were confirmed by polymerase chain reaction on genomic and cDNA. The patient with juvenile onset had an Alu/Alu mediated rearrangement, which resulted in the loss of ~18.5 kb genomic DNA. At the mRNA level, this caused an in-frame deletion of exons 3–7. The patient with infantile onset had a complex rearrangement with two deletions and an inversion between intron 10 and 14. This rearrangement led to a frameshift at the mRNA level. Our results show that SMARD1 can be caused by genomic rearrangements at the IGHMBP2 gene locus. This may be missed by mere sequence analysis. Additionally, we demonstrate that juvenile onset SMARD1 may also be caused by mutations of IGHMBP2. The complex nature of the genomic rearrangement in the patient with infantile SMARD1 is discussed and a deletion mechanism is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号