首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6678篇
  免费   636篇
  国内免费   2篇
  7316篇
  2024年   7篇
  2023年   45篇
  2022年   76篇
  2021年   125篇
  2020年   94篇
  2019年   113篇
  2018年   167篇
  2017年   129篇
  2016年   228篇
  2015年   397篇
  2014年   420篇
  2013年   492篇
  2012年   618篇
  2011年   569篇
  2010年   362篇
  2009年   304篇
  2008年   401篇
  2007年   395篇
  2006年   351篇
  2005年   310篇
  2004年   349篇
  2003年   296篇
  2002年   261篇
  2001年   44篇
  2000年   48篇
  1999年   64篇
  1998年   91篇
  1997年   46篇
  1996年   33篇
  1995年   52篇
  1994年   35篇
  1993年   33篇
  1992年   34篇
  1991年   23篇
  1990年   21篇
  1989年   28篇
  1988年   35篇
  1987年   21篇
  1986年   16篇
  1985年   19篇
  1984年   15篇
  1983年   18篇
  1982年   13篇
  1981年   15篇
  1980年   13篇
  1979年   11篇
  1978年   11篇
  1977年   13篇
  1976年   10篇
  1974年   13篇
排序方式: 共有7316条查询结果,搜索用时 15 毫秒
121.
A vector system is presented that allows generation of E. coli co-expression clones by a standardized, robust cloning procedure. The number of co-expressed proteins is not limited. Five ‘pQLink’ vectors for expression of His-tag and GST-tag fusion proteins as well as untagged proteins and for cloning by restriction enzymes or Gateway cloning were generated. The vectors allow proteins to be expressed individually; to achieve co-expression, two pQLink plasmids are combined by ligation-independent cloning. pQLink co-expression plasmids can accept an unrestricted number of genes. As an example, the co-expression of a heterotetrameric human transport protein particle (TRAPP) complex from a single plasmid, its isolation and analysis of its stoichiometry are shown. pQLink clones can be used directly for pull-down experiments if the proteins are expressed with different tags. We demonstrate pull-down experiments of human valosin-containing protein (VCP) with fragments of the autocrine motility factor receptor (AMFR). The cloning method avoids PCR or gel isolation of restriction fragments, and a single resistance marker and origin of replication are used, allowing over-expression of rare tRNAs from a second plasmid. It is expected that applications are not restricted to bacteria, but could include co-expression in other hosts such as Bacluovirus/insect cells.  相似文献   
122.
The high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway mediates adaptation to high-osmolarity stress in the yeast Saccharomyces cerevisiae. Here we investigate the function of HOG in the human opportunistic fungal pathogen Candida glabrata. C. glabrata sho1Delta (Cgsho1Delta) deletion strains from the sequenced ATCC 2001 strain display severe growth defects under hyperosmotic conditions, a phenotype not observed for yeast sho1Delta mutants. However, deletion of CgSHO1 in other genetic backgrounds fails to cause osmostress hypersensitivity, whereas cells lacking the downstream MAP kinase Pbs2 remain osmosensitive. Notably, ATCC 2001 Cgsho1Delta cells also display methylglyoxal hypersensitivity, implying the inactivity of the Sln1 branch in ATCC 2001. Genomic sequencing of CgSSK2 in different C. glabrata backgrounds demonstrates that ATCC 2001 harbors a truncated and mutated Cgssk2-1 allele, the only orthologue of yeast SSK2/SSK22 genes. Thus, the osmophenotype of ATCC 2001 is caused by a point mutation in Cgssk2-1, which debilitates the second HOG pathway branch. Functional complementation experiments unequivocally demonstrate that HOG signaling in yeast and C. glabrata share similar functions in osmostress adaptation. In contrast to yeast, however, Cgsho1Delta mutants display hypersensitivity to weak organic acids such as sorbate and benzoate. Hence, CgSho1 is also implicated in modulating weak acid tolerance, suggesting that HOG signaling in C. glabrata mediates the response to multiple stress conditions.  相似文献   
123.
Eberle C  Ament C 《Bio Systems》2011,103(1):67-72
Understanding the simultaneous interaction within the glucose and insulin homeostasis in real-time is very important for clinical treatment as well as for research issues. Until now only plasma glucose concentrations can be measured in real-time. To support a secure, effective and rapid treatment e.g. of diabetes a real-time estimation of plasma insulin would be of great value. A novel approach using an Unscented Kalman Filter that provides an estimate of the current plasma insulin concentration is presented, which operates on the measurement of the plasma glucose and Bergman's Minimal Model of the glucose insulin homeostasis. We can prove that process observability is obtained in this case. Hence, a successful estimator design is possible. Since the process is nonlinear we have to consider estimates that are not normally distributed. The symmetric Unscented Kalman Filter (UKF) will perform best compared to other estimator approaches as the Extended Kalman Filter (EKF), the simplex Unscented Kalman Filter (UKF), and the Particle Filter (PF). The symmetric UKF algorithm is applied to the plasma insulin estimation. It shows better results compared to the direct (open loop) estimation that uses a model of the insulin subsystem.  相似文献   
124.
125.
The balanced action of both pre- and postsynaptic organizers regulates the formation of neuromuscular junctions (NMJ). The precise mechanisms that control the regional specialization of acetylcholine receptor (AChR) aggregation, guide ingrowing axons and contribute to correct synaptic patterning are unknown. Synaptic activity is of central importance and to understand synaptogenesis, it is necessary to distinguish between activity-dependent and activity-independent processes. By engineering a mutated fetal AChR subunit, we used homologous recombination to develop a mouse line that expresses AChR with massively reduced open probability during embryonic development. Through histological and immunochemical methods as well as electrophysiological techniques, we observed that endplate anatomy and distribution are severely aberrant and innervation patterns are completely disrupted. Nonetheless, in the absence of activity AChRs form postsynaptic specializations attracting motor axons and permitting generation of multiple nerve/muscle contacts on individual fibers. This process is not restricted to a specialized central zone of the diaphragm and proceeds throughout embryonic development. Phenotypes can be attributed to separate activity-dependent and -independent pathways. The correct patterning of synaptic connections, prevention of multiple contacts and control of nerve growth require AChR-mediated activity. In contrast, myotube survival and acetylcholine-mediated dispersal of AChRs are maintained even in the absence of AChR-mediated activity. Because mouse models in which acetylcholine is entirely absent do not display similar effects, we conclude that acetylcholine binding to the AChR initiates activity-dependent and activity-independent pathways whereby the AChR modulates formation of the NMJ.  相似文献   
126.
Psoriasis is a characteristic inflammatory and scaly skin condition with typical histopathological features including increased proliferation and hampered differentiation of keratinocytes. The activation of innate and adaptive inflammatory cellular immune responses is considered to be the main trigger factor of the epidermal changes in psoriatic skin. However, the molecular players that are involved in enhanced proliferation and impaired differentiation of psoriatic keratinocytes are only partly understood. One important factor that regulates differentiation on the cellular level is Ca(2+). In normal epidermis, a Ca(2+) gradient exists that is disturbed in psoriatic plaques, favoring impaired keratinocyte proliferation. Several TRPC channels such as TRPC1, TRPC4, or TRPC6 are key proteins in the regulation of high [Ca(2+)](ex) induced differentiation. Here, we investigated if TRPC channel function is impaired in psoriasis using calcium imaging, RT-PCR, western blot analysis and immunohistochemical staining of skin biopsies. We demonstrated substantial defects in Ca(2+) influx in psoriatic keratinocytes in response to high extracellular Ca(2+) levels, associated with a downregulation of all TRPC channels investigated, including TRPC6 channels. As TRPC6 channel activation can partially overcome this Ca(2+) entry defect, specific TRPC channel activators may be potential new drug candidates for the topical treatment of psoriasis.  相似文献   
127.
In order to test the interaction of different phytochromes and blue-light receptors, etiolated seedlings of wild-type Arabidopsis thaliana (L.) Heynh., a phytochrome (phy) B-overexpressor line (ABO), and the photoreceptor mutants phyA-201, phyB-5, hy4-2.23n, fha-1, phyA-201/phyB-5, and phyA-201/hy4-2.23n were exposed to red and far-red light pulses after various preirradiations. The responsiveness to the inductive red pulses is primarily mediated by phyB which is rather stable in its far-red-absorbing form as demonstrated by a very slow loss of reversibility. Without preirradiation the red pulses had an impact on hypocotyl elongation only in PHYA mutants but not in the wild type. This indicates a suppression of phyB function by the presence of phyA. Preirradiation with either far-red or blue light resulted in an inhibition of hypocotyl elongation by red pulses in the wild type. Responsiveness amplification by far-red light is mediated by phyA and disappears slowly in the dark. The extent of responsiveness amplification by blue light was identical in the wild type and in the absence of phyA, or the cryptochromes cryl (hy4-2.23n) or cry2 (fha-1). Therefore, we conclude that stimulation of phyB by blue light preirradiation is either mediated by an additional still-unidentified blue-light-absorbing pigment or that phyA, cry1 and cry2 substitute for each other completely. Both blue and red preirradiation established responsiveness to red pulses in phyA-201/phyB-5 double mutants. These results demonstrate that inhibition of hypocotyl elongation by red pulses is not only mediated by phyB but also by a phytochrome(s) other than phyA and phyB. Received: 21 July 1998 / Accepted: 7 December 1998  相似文献   
128.
Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.  相似文献   
129.
The Bcl‐2 inhibitor FKBP38 is regulated by the Ca2+‐sensor calmodulin (CaM). Here we show a hitherto unknown low‐affinity cation‐binding site in the FKBP domain of FKBP38, which may afford an additional level of regulation based on electrostatic interactions. Fluorescence titration experiments indicate that in particular the physiologically relevant Ca2+ ion binds to this site. NMR‐based chemical shift perturbation data locate this cation‐interaction site within the β5–α1 loop (Leu90–Ile96) of the FKBP domain, which contains the acidic Asp92 and Asp94 side‐chains. Binding constants were subsequently determined for K+, Mg2+, Ca2+, and La3+, indicating that the net charge and the radius of the ion influences the binding interaction. X‐ray diffraction data furthermore show that the conformation of the β5–α1 loop is influenced by the presence of a positively charged guanidinium group belonging to a neighboring FKBP38 molecule in the crystal lattice. The position of the cation‐binding site has been further elucidated based on pseudocontact shift data obtained by NMR via titration with Tb3+. Elimination of the Ca2+‐binding capacity by substitution of the respective aspartate residues in a D92N/D94N double‐substituted variant reduces the Bcl‐2 affinity of the FKBP3835–153/CaM complex to the same degree as the presence of Ca2+ in the wild‐type protein. Hence, this charge‐sensitive site in the FKBP domain participates in the regulation of FKBP38 function by enabling electrostatic interactions with ligand proteins and/or salt ions such as Ca2+. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
130.

Background

Osteopontin represents a multifunctional molecule playing a pivotal role in chronic inflammatory and autoimmune diseases. Its expression is increased in inflammatory bowel disease (IBD). The aim of our study was to analyze the association of osteopontin (OPN/SPP1) gene variants in a large cohort of IBD patients.

Methodology/Principal Findings

Genomic DNA from 2819 Caucasian individuals (n = 841 patients with Crohn''s disease (CD), n = 473 patients with ulcerative colitis (UC), and n = 1505 healthy unrelated controls) was analyzed for nine OPN SNPs (rs2728127, rs2853744, rs11730582, rs11739060, rs28357094, rs4754 = p.Asp80Asp, rs1126616 = p.Ala236Ala, rs1126772 and rs9138). Considering the important role of osteopontin in Th17-mediated diseases, we performed analysis for epistasis with IBD-associated IL23R variants and analyzed serum levels of the Th17 cytokine IL-22. For four OPN SNPs (rs4754, rs1126616, rs1126772 and rs9138), we observed significantly different distributions between male and female CD patients. rs4754 was protective in male CD patients (p = 0.0004, OR = 0.69). None of the other investigated OPN SNPs was associated with CD or UC susceptibility. However, several OPN haplotypes showed significant associations with CD susceptibility. The strongest association was found for a haplotype consisting of the 8 OPN SNPs rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772-rs9138 (omnibus p-value = 2.07×10−8). Overall, the mean IL-22 secretion in the combined group of OPN minor allele carriers with CD was significantly lower than that of CD patients with OPN wildtype alleles (p = 3.66×10−5). There was evidence for weak epistasis between the OPN SNP rs28357094 with the IL23R SNP rs10489629 (p = 4.18×10−2) and between OPN SNP rs1126616 and IL23R SNP rs2201841 (p = 4.18×10−2) but none of these associations remained significant after Bonferroni correction.

Conclusions/Significance

Our study identified OPN haplotypes as modifiers of CD susceptibility, while the combined effects of certain OPN variants may modulate IL-22 secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号