首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   8篇
  国内免费   9篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   12篇
  2014年   9篇
  2013年   8篇
  2012年   6篇
  2011年   10篇
  2010年   9篇
  2009年   9篇
  2008年   3篇
  2007年   4篇
  2006年   7篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1995年   1篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
  1977年   2篇
  1955年   1篇
  1954年   2篇
排序方式: 共有135条查询结果,搜索用时 272 毫秒
101.
In eukaryotes, cytosine methylation regulates diverse biological processes such as gene expression, development and maintenance of genomic integrity. However, cytosine methylation and its functions in pathogenic apicomplexan protozoans remain enigmatic. To address this, here we investigated the presence of cytosine methylation in the nucleic acids of the protozoan Plasmodium falciparum. Interestingly, P. falciparum has TRDMT1, a conserved homologue of DNA methyltransferase DNMT2. However, we found that TRDMT1 did not methylate DNA, in vitro. We demonstrate that TRDMT1 methylates cytosine in the endogenous aspartic acid tRNA of P. falciparum. Through RNA bisulfite sequencing, we mapped the position of 5-methyl cytosine in aspartic acid tRNA and found methylation only at C38 position. P. falciparum proteome has significantly higher aspartic acid content and a higher proportion of proteins with poly aspartic acid repeats than other apicomplexan pathogenic protozoans. Proteins with such repeats are functionally important, with significant roles in host-pathogen interactions. Therefore, TRDMT1 mediated C38 methylation of aspartic acid tRNA might play a critical role by translational regulation of important proteins and modulate the pathogenicity of the malarial parasite.  相似文献   
102.
103.
基因转移是实现基因治疗的关键技术之一 ,目前尚缺少简便、易行、有效、安全的方法 .首次将我国传统的针刺技术与现代转基因技术结合起来 ,创建了一种电针转基因的方法 .应用针灸针携带外源基因 ,经皮针刺 ,进行直流电刺激 ,可实现有效的基因转移 .  相似文献   
104.
Restriction mapping and sequencing have shown that humans have substantially lower levels of mitochondrial genome diversity (d) than chimpanzees. In contrast, humans have substantially higher levels of heterozygosity (H) at protein-coding loci, suggesting a higher level of diversity in the nuclear genome. To investigate the discrepancy further, we sequenced a segment of the mitochondrial genome control region (CR) from 49 chimpanzees. The majority of these were from the Pan troglodytes versus subspecies, which was underrepresented in previous studies. We also estimated the average heterozygosity at 60 short tandem repeat (STR) loci in both species. For a total sample of 115 chimpanzees, d = 0.075 +/0 0.037, compared to 0.020 +/- 0.011 for a sample of 1,554 humans. The heterozygosity of human STR loci is significantly higher than that of chimpanzees. Thus, the higher level of nuclear genome diversity relative to mitochondrial genome diversity in humans is not restricted to protein-coding loci. It seems that humans, not chimpanzees, have an unusual d/H ratio, since the ratio in chimpanzees is similar to that in other catarrhines. This discrepancy in the relative levels of nuclear and mitochondrial genome diversity in the two species cannot be explained by differences in mutation rate. However, it may result from a combination of factors such as a difference in the extent of sex ratio disparity, the greater effect of population subdivision on mitochondrial than on nuclear genome diversity, a difference in the relative levels of male and female migration among subpopulations, diversifying selection acting to increase variation in the nuclear genome, and/or directional selection acting to reduce variation in the mitochondrial genome.   相似文献   
105.
106.
Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level.  相似文献   
107.
Anglerfish proinsulin and insulin were selectively labeled with [(14)C]isoleucine, while proglucagon, conversion intermediate(s), and glucagon were selectively labeled with[(3)H]tryptophan. After various periods of continuous or pulse-chase incubation, islet tissue was subjected to subcellular fractionation. Fraction extracts were analyzed by gel filtration for their content of precursor, conversion intermediate(s), and product peptides. Of the seven subcellular fractions prepared after each incubation, only the microsome and secretory granule fractions yielded significant amounts of labeled insulin-related and glucagon-related peptides. After short-pulse incubations, levels of both [(14)C]proinsulin and [(3)H]proglucagon (mol wt approximately 12,000) were highest in the microsome fraction. This fraction is therefore identified as the site of synthesis. With increasing duration of continuous incubation or during chase incubation in the absence of isotopes, proinsulin, proglucagon, and conversion intermediate(s) are transported to secretory granules. Conversion of proinsulin to insulin and proglucagon to a approximately 4,900 mol wt conversion intermediate and 3,500 mol wt glucagon occurs in the secretory granules. Converting activity also was observed in the microsome fraction. The recovery of most of the incorporated radioactivity in microsome and secretory granule fractions indicates that the newly synthesized islet peptides are relegated to a membrane-bound state soon after synthesis at the RER is completed. This finding supports the concept of intracisternal sequestration and intragranular maintenance of peptides synthesized for export from the cell of origin.  相似文献   
108.
Lygus hesperus Knight is native to the western United States and is a perennial pest of numerous crops in California. It is responsible for triggering the early season application of insecticides on cotton, Gossypium hirsutum L., and strawberries, Fragaria L. Despite several surveys conducted in alfalfa (Medicago sativa L.) grown in central California, nymphal parasitoids associated with L. hesperus and L. elisus have not been found. Two exotic parasitoids were released into California beginning in 1998. Peristenus relictus (Ruhte), formerly P. stygicus Loan, and P. digoneutis Loan were collected from several locations in southern Europe and released at up to six locations over a 6-year period. At the original release site in Sacramento, a 0.25-ha plot of alfalfa, parasitism by P. digoneutis and P. relictus combined increased from zero to 90%, 3 years after the last releases were made. Parasitoids have been recovered from vacant fields of weedy annuals within 2 km of this site. Recoveries at more southerly release sites in central California have been poor.  相似文献   
109.
蜘蛛丝是一类天然蛋白质纤维,具有独特的机械性能(高强度、高弹性和高断裂功等)和卓著的生物学特性(生物可降解性和与生物组织的相容性等),在生物医学、材料、纺织和军事等领域都有着很高的潜在应用价值。综述了不同蜘蛛丝蛋白的模块结构特征及与其功能的关系,扼要介绍了目前利用各种基因工程方法表达重组蜘蛛丝蛋白的研究进展。  相似文献   
110.
曹彦  易艳荣 《生物磁学》2011,(10):1817-1820
目的:探讨SOCS-3在非酒精性脂肪肝病(NAFLD)发病中的作用以及吡格列酮的干预作用。方法:29只雄性SD大鼠随机分为正常对照组(8只),高脂饮食组(21只)。饲养8周后,从高质饮食组随机抽取5只大鼠证实造模成功后,将该组余下的16只大鼠继续以高脂饲料喂养,并随机分为NAFLD对照组(8只);吡格酮干预组(8只),予以吡格列酮3mg·kg^-1·d^-1灌胃。16周末,处死所有大鼠,检测血糖、血胰岛素、血脂、肝脏SOCS-3mRNA和SREBP-lcmRNA表达及肝脏病理学。结果:与正常对照组相比,NAFLD组血糖、血胰岛素、血脂、肝脏脂肪变水平及肝组织SOCS-3mRNA、SREBPlCmRNA表达显著上调。吡格列酮干预组sOCS.3mRNA、SREBP-1cmRNA表达较NAFLD组下调,且血糖、血胰岛素、血脂、肝脏脂肪变水平下降。SOCS-3mRNA表达水平与胰岛素抵抗指数、SREBP.1cmRNA表达水平、肝脂肪变成显著正相关。结论:SOCS-3可能通过胰岛素抵抗及上调肝组织SREBP-lcmRNA表达参与NAFLD发病,吡格列酮能抑制肝脏SOCS-3的表达,对NAFLD有一定治疗作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号