首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   867篇
  免费   76篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   9篇
  2019年   12篇
  2018年   12篇
  2017年   11篇
  2016年   17篇
  2015年   34篇
  2014年   36篇
  2013年   65篇
  2012年   80篇
  2011年   84篇
  2010年   52篇
  2009年   46篇
  2008年   46篇
  2007年   67篇
  2006年   61篇
  2005年   48篇
  2004年   41篇
  2003年   36篇
  2002年   50篇
  2001年   8篇
  2000年   13篇
  1999年   5篇
  1998年   9篇
  1997年   9篇
  1996年   7篇
  1995年   11篇
  1994年   13篇
  1993年   5篇
  1992年   4篇
  1990年   7篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
排序方式: 共有943条查询结果,搜索用时 62 毫秒
71.

Background

Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases.

Methods

We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base).

Results

We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases.

Conclusions

We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.  相似文献   
72.
Post-conditioning by repetitive cycles of reperfusion/ischemia after prolonged ischemia protects the heart from infarction. The objectives of this study were: Are kinases (PI3-kinase, mTOR, and GSK-3β) involved in the signaling pathway of post-conditioning? Does post-conditioning result in a diminished necrosis or apoptosis? In open chest rats the infarct size was determined after 30 min of regional ischemia and 30 min of reperfusion using propidium iodide and microspheres. Post-conditioning was performed by three cycles of 30 s reperfusion and reocclusion each, immediately upon reperfusion. PI3-kinase and mTOR were blocked using wortmannin (0.6 mg/kg) or rapamycin (0.25 mg/kg), respectively. The phosphorylation of GSK-3β and p70S6K was determined with phospho-specific antibodies. TUNEL staining and detection of apoptosis-inducing factor (AIF) were used for the determination of apoptosis. Control hearts had an infarct size of 49 ± 3%, while post-conditioning significantly reduced it to 29 ± 3% (P < 0.01). Wortmannin as well as rapamycin completely blocked the infarct size reduction of post-conditioning (51 ± 2% and 54 ± 5%, respectively). Western blot analysis revealed that post-conditioning increased the phosphorylation of GSK-3β by 2.3 times (P < 0.01), and this increase could be blocked by wortmannin, a PI3-kinase inhibitor. Although rapamycin blocked the infarct size reduction, phosphorylation of p70S6K was not increased in post-conditioned hearts. After 2 h of reperfusion, the post-conditioned hearts had significantly fewer TUNEL-positive nuclei (35 %) compared to control hearts (53%; P < 0.001). AIF was equally reduced in post-conditioned rat hearts (P < 0.05 vs. control). Infarct size reduction by ischemic post-conditioning of the in vivo rat heart is PI3-kinase dependent and involves mTOR. Furthermore, GSK-3β, which is thought to be a regulator of the mPTP, is part of the signaling pathway of post-conditioning. Finally, apoptosis was inhibited by post-conditioning, which was shown by two independent methods. The role of apoptosis and/or autophagy in post-conditioning has to be further elucidated to find therapeutic targets to protect the heart from the consequences of acute myocardial infarction.  相似文献   
73.
74.
Verticillium dahliae is a soilborne fungus that causes a vascular wilt disease of plants and losses in a broad range of economically important crops worldwide. In this study, we compared the proteomes of highly (Vd1396‐9) and weakly (Vs06‐14) aggressive isolates of V. dahliae to identify protein factors that may contribute to pathogenicity. Twenty‐five protein spots were consistently observed as differential in the proteome profiles of the two isolates. The protein sequences in the spots were identified by LC‐ESI‐MS/MS and MASCOT database searches. Some of the identified sequences shared homology with fungal proteins that have roles in stress response, colonization, melanin biosynthesis, microsclerotia formation, antibiotic resistance, and fungal penetration. These are important functions for infection of the host and survival of the pathogen in soil. One protein found only in the highly aggressive isolate was identified as isochorismatase hydrolase, a potential plant‐defense suppressor. This enzyme may inhibit the production of salicylic acid, which is important for plant defense response signaling. Other sequences corresponding to potential pathogenicity factors were identified in the highly aggressive isolate. This work indicates that, in combination with functional genomics, proteomics‐based analyses can provide additional insights into pathogenesis and potential management strategies for this disease.  相似文献   
75.
Large-scale (temporal and/or spatial) molecular investigations of the diversity and distribution of arbuscular mycorrhizal fungi (AMF) require considerable sampling efforts and high-throughput analysis. To facilitate such efforts, we have developed a TaqMan real-time PCR assay to detect and identify AMF in environmental samples. First, we screened the diversity in clone libraries, generated by nested PCR, of the nuclear ribosomal DNA internal transcribed spacer (ITS) of AMF in environmental samples. We then generated probes and forward primers based on the detected sequences, enabling AMF sequence type-specific detection in TaqMan multiplex real-time PCR assays. In comparisons to conventional clone library screening and Sanger sequencing, the TaqMan assay approach provided similar accuracy but higher sensitivity with cost and time savings. The TaqMan assays were applied to analyze the AMF community composition within plots of a large-scale plant biodiversity manipulation experiment, the Jena Experiment, primarily designed to investigate the interactive effects of plant biodiversity on element cycling and trophic interactions. The results show that environmental variables hierarchically shape AMF communities and that the sequence type spectrum is strongly affected by previous land use and disturbance, which appears to favor disturbance-tolerant members of the genus Glomus. The AMF species richness of disturbance-associated communities can be largely explained by richness of plant species and plant functional groups, while plant productivity and soil parameters appear to have only weak effects on the AMF community.Arbuscular mycorrhizae are mutualistic associations between roots of plants and fungi that have been present for more than 400 million years (54). Approximately 80% of examined land plants (71), and almost all fungi of the phylum Glomeromycota (60), are capable of forming such associations. The main benefit of this relationship for plants is that it facilitates their acquisition of nutrients (especially P and N), while the fungus receives photoassimilates (7, 62). About 200 Glomeromycota species have been described to date, based on spore morphology (http://www.lrz-muenchen.de/∼schuessler/amphylo/amphylogeny.html), but there is increasing molecular evidence of significantly higher diversity in arbuscular mycorrhizal fungi (AMF) (10, 72).Diverse AMF communities have been detected in a wide range of plant communities (inter alia grasslands, boreal forests, and tropical communities; for an overview, see reference 48). Hence, AMF have been considered to be tolerant of wide ranges of ecological conditions and capable of associating with diverse plant partners. Identifying the factors regulating their community assemblages is challenging, but AMF community composition has been shown to be influenced by plant species diversity (e.g., see references 10, 22, and 33), and conversely, significant effects of AMF species and communities on the diversity and productivity of plant communities have been described (25, 68). Soil physicochemical parameters like phosphorus, nitrogen, and carbon availability (e.g., see references 4, 9, and 31); pH (17); moisture content (53); and disturbance (30) also reportedly influence AMF distribution. Hence, there is some support for niche theory, which presumes that two species of the same trophic level cannot coexist in a limited system and, if two species are present in such circumstances, one should become extinct (21). As a corollary, two cooccurring species must occupy niches that differ in some dimensions, e.g., plant hosts and/or soil properties (28). However, there are also indications that neutral ecological processes, as well as niche-defining parameters, may influence AMF diversity and community composition (17, 39). In contrast to niche theory, neutral theory (27) postulates that all individuals of every species at a given trophic level in a food web have ecological equivalence, and thus, all species within trophically defined communities can be regarded as open nonequilibrium assemblages that are solely shaped by dispersal and distinctions in spatiotemporal dimensions. According to the work of Hubbell (27), neutrality is defined at the level of individual organisms with identical probabilities of birth, death, migration, and speciation and not at the species level. In order to explore AMF communities more thoroughly and to test competing hypotheses, such as those raised by the niche and neutral theories, robust methods for high-throughput analyses of the communities are required.Recent investigations of variables that affect the structure of AMF communities have considered relationships between niche-defining dimensions, such as soil types (39) and pH gradients (17), and spatial variations in AMF community structure but not the role of plant diversity or functional traits of host plants. There have been several plant diversity manipulation experiments designed for coanalyzing multiple sets of ecological variables (e.g., the BIODEPTH and Cedar Creek projects) that would have been ideal for detailed examinations of effects of ecological variables on AMF, but previously reported AMF analyses in these experiments have been limited to counts of spores in a single study (11). However, not all AMF species regularly sporulate, and when present, spores poorly reflect AMF diversity (69), since active AMF occur as mycelia in roots and soils (e.g., see references 12 and 26). PCR-based molecular techniques enable much more rigorous characterization of AMF communities in these compartments (e.g., see references 26, 36, and 72), but assessments of broad spatial (42) and/or temporal (52) variations in AMF communities require analysis of large numbers of samples, which is not feasible using conventional PCR amplification followed by cloning and sequencing. This challenge can be potentially met by real-time PCR-based approaches, in which the AMF sequence types present in compartments of interest are first identified and then sequence type-specific probes are used for large-scale screening in real-time PCR TaqMan assays.In the study presented here, we explored AMF diversity in plots used in the Jena Experiment, a grassland plant diversity manipulation of 60 plant species representing four functional groups in 81 plots of 400 m2 (56). The overall AMF diversity and community structure were first assessed by PCR amplification, cloning, and sequencing (55) of internal transcribed spacer (ITS) ribosomal DNA (rDNA) gene sequences in soil samples from 23 representative plots. Using the acquired data, we then developed sequence type-specific probes, which were applied in high-throughput real-time PCR TaqMan assays of samples from all 81 experimental plots, and the effects of 15 plant and soil variables on the AMF community assemblage were investigated.  相似文献   
76.

Background  

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an immunoglobulin (Ig)-related glycoprotein, serves as cellular receptor for a variety of Gram-negative bacterial pathogens associated with the human mucosa. In particular, Neisseria gonorrhoeae, N. meningitidis, Moraxella catarrhalis, and Haemophilus influenzae possess well-characterized CEACAM1-binding adhesins. CEACAM1 is typically involved in cell-cell attachment, epithelial differentiation, neovascularisation and regulation of T-cell proliferation, and is one of the few CEACAM family members with homologues in different mammalian lineages. However, it is unknown whether bacterial adhesins of human pathogens can recognize CEACAM1 orthologues from other mammals.  相似文献   
77.

Introduction  

There is growing evidence that interleukin 17 (IL-17) producing T cells are involved in the pathogenesis of systemic lupus erythematosus (SLE). Previous studies showed that increased percentages of T-cell subsets expressing the costimulatory molecules CD80 and CD134 are associated with disease activity and renal involvement in SLE. The aim of this study was to investigate the distribution and phenotypical characteristics of IL-17 producing T-cells in SLE, in particular in patients with lupus nephritis, with emphasis on the expression of CD80 and CD134.  相似文献   
78.
Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.  相似文献   
79.
Pleiotropic effects are one of the main concerns regarding genetically modified organisms (GMOs). This includes unintended side effects of the transgene or its genome insertion site on the regulation of other endogenous genes, which could potentially cause the accumulation of different secondary metabolites that may have not only an impact on diet as repeatedly worried by the public but also on the environment. Regarding amount and possible environmental effects, flavonoids represent the most prominent group of secondary metabolites in wheat. Many flavonoids function as signalling or defence molecules. We used a robust and reproducible analytical method to compare the flavonoid content of genetically modified (GM) wheat (Triticum aestivum L., Gramineae) expressing genes that confer increased fungal resistance with their non-GM siblings. The transgenes provide either a broad-spectrum fungal defence (chitinase/glucanase from barley) or bunt-specific resistance by a viral gene (KP4). Significant differences in flavonoid composition were found between different wheat varieties whereas different lines of GM wheat with increased antifungal resistance showed only minor differences in their flavonoid composition relative to their non-GM siblings. In a field test, no significant differences were detectable between infected and non-infected wheat of the same variety regardless of the presence of the transgene. Our results are in agreement with the hypothesis that the transgenes we used to increase wheat defence to fungal pathogens do not interfere with the flavonoid biosynthesis pathway. More significantly, the genetic background resulting from conventional breeding has a direct impact on the biological composition of flavonoids, and thus possibly on the environment.  相似文献   
80.
The human granulocyte-specific receptor carcinoembryonic antigen-related cell adhesion molecule (CEACAM)3 is critically involved in the opsonin-independent recognition of several bacterial pathogens. CEACAM3-mediated phagocytosis depends on the integrity of an ITAM-like sequence within the cytoplasmic domain of CEACAM3 and is characterized by rapid stimulation of the GTPase Rac. By performing a functional screen with CEACAM3-expressing cells, we found that overexpression of a dominant-negative form of the guanine nucleotide exchange factor Vav, but not the dominant-negative versions SWAP70, Dock2, or ELMO1 interfered with CEACAM3-initiated phagocytosis. Moreover, small interfering RNA-mediated silencing of Vav reduced uptake and abrogated the stimulation of Rac in response to bacterial CEACAM3 engagement. In Vav1/Vav2-deficient cells, CEACAM3-mediated internalization was only observed after re-expression of Vav. Vav colocalized with CEACAM3 upon bacterial infection, coimmunoprecipitated in a complex with CEACAM3, and the Vav Src homology 2 domain directly associated with phosphorylated Tyr(230) of CEACAM3. In primary human granulocytes, TAT-mediated transduction of dominant-negative Vav, but not SWAP70, severely impaired the uptake of CEACAM3-binding bacteria. These data support the view that, different from canonical ITAM signaling, the CEACAM3 ITAM-like sequence short-wires bacterial recognition and Rac stimulation via a direct association with Vav to promote rapid phagocytosis and elimination of CEACAM-binding human pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号