首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12533篇
  免费   1108篇
  国内免费   4篇
  2023年   39篇
  2022年   53篇
  2021年   209篇
  2020年   100篇
  2019年   160篇
  2018年   178篇
  2017年   164篇
  2016年   344篇
  2015年   541篇
  2014年   694篇
  2013年   790篇
  2012年   1009篇
  2011年   987篇
  2010年   654篇
  2009年   567篇
  2008年   825篇
  2007年   809篇
  2006年   780篇
  2005年   708篇
  2004年   674篇
  2003年   690篇
  2002年   633篇
  2001年   95篇
  2000年   80篇
  1999年   126篇
  1998年   204篇
  1997年   123篇
  1996年   112篇
  1995年   129篇
  1994年   97篇
  1993年   117篇
  1992年   103篇
  1991年   71篇
  1990年   69篇
  1989年   57篇
  1988年   56篇
  1987年   40篇
  1986年   50篇
  1985年   49篇
  1984年   63篇
  1983年   40篇
  1982年   52篇
  1981年   42篇
  1980年   33篇
  1979年   27篇
  1978年   23篇
  1977年   35篇
  1976年   23篇
  1974年   25篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Aubert S  Juge C  Boisson AM  Gout E  Bligny R 《Planta》2007,226(5):1287-1297
To survive in high mountain environments lichens must adapt themselves to alternating periods of desiccation and hydration. Respiration and photosynthesis of the foliaceous lichen, Xanthoria elegans, in the dehydrated state were below the threshold of CO2-detection by infrared gas analysis. Following hydration, respiration totally recovered within seconds and photosynthesis within minutes. In order to identify metabolic processes that may contribute to the quick and efficient reactivation of lichen physiological processes, we analysed the metabolite profile of lichen thalli step by step during hydration/dehydration cycles, using 31P- and 13C-NMR. It appeared that the recovery of respiration was prepared during dehydration by the accumulation of a reserve of gluconate 6-P (glcn-6-P) and by the preservation of nucleotide pools, whereas glycolytic and photosynthetic intermediates like glucose 6-P and ribulose 1,5-diphosphate were absent. The large pools of polyols present in both X. elegans photo- and mycobiont are likely to contribute to the protection of cell constituents like nucleotides, proteins, and membrane lipids, and to preserve the integrity of intracellular structures during desiccation. Our data indicate that glcn-6-P accumulated due to activation of the oxidative pentose phosphate pathway, in response to a need for reducing power (NADPH) during the dehydration-triggered down-regulation of cell metabolism. On the contrary, glcn-6-P was metabolised immediately after hydration, supplying respiration with substrates during the replenishment of pools of glycolytic and photosynthetic intermediates. Finally, the high net photosynthetic activity of wet X. elegans thalli at low temperature may help this alpine lichen to take advantage of brief hydration opportunities such as ice melting, thus favouring its growth in harsh high mountain climates.  相似文献   
982.
Nitric oxide and S-nitrosothiols (SNOs) are widespread signaling molecules that regulate immunity in animals and plants. Levels of SNOs in vivo are controlled by nitric oxide synthesis (which in plants is achieved by different routes) and by S-nitrosoglutathione turnover, which is mainly performed by the S-nitrosoglutathione reductase (GSNOR). GSNOR is encoded by a single-copy gene in Arabidopsis (Arabidopsis thaliana; Martínez et al., 1996; Sakamoto et al., 2002). We report here that transgenic plants with decreased amounts of GSNOR (using antisense strategy) show enhanced basal resistance against Peronospora parasitica Noco2 (oomycete), which correlates with higher levels of intracellular SNOs and constitutive activation of the pathogenesis-related gene, PR-1. Moreover, systemic acquired resistance is impaired in plants overexpressing GSNOR and enhanced in the antisense plants, and this correlates with changes in the SNO content both in local and systemic leaves. We also show that GSNOR is localized in the phloem and, thus, could regulate systemic acquired resistance signal transport through the vascular system. Our data corroborate the data from other authors that GSNOR controls SNO in vivo levels, and shows that SNO content positively influences plant basal resistance and resistance-gene-mediated resistance as well. These data highlight GSNOR as an important and widely utilized component of resistance protein signaling networks conserved in animals and plants.  相似文献   
983.
The molecular chaperone HEAT SHOCK PROTEIN90 (HSP90) is essential for the maturation of key regulatory proteins in eukaryotes and for the response to temperature stress. Earlier, we have reported that fungi living in association with plants of the Sonoran desert produce small molecule inhibitors of mammalian HSP90. Here, we address whether elaboration of the HSP90 inhibitor monocillin I (MON) by the rhizosphere fungus Paraphaeosphaeria quadriseptata affects plant HSP90 and plant environmental responsiveness. We demonstrate that MON binds Arabidopsis (Arabidopsis thaliana) HSP90 and can inhibit the function of HSP90 in lysates of wheat (Triticum aestivum) germ. MON treatment of Arabidopsis seedlings induced HSP101 and HSP70, conserved components of the stress response. Application of MON, or growth in the presence of MON, allowed Arabidopsis wild type but not AtHSP101 knockout mutant seedlings to survive otherwise lethal temperature stress. Finally, cocultivation of P. quadriseptata with Arabidopsis enhanced plant heat stress tolerance. These data demonstrate that HSP90-inhibitory compounds produced by fungi can influence plant growth and responses to the environment.  相似文献   
984.
Several studies have shown that the native 7alpha-hydroxy-dehydroepiandrosterone (7alpha-hydroxy-DHEA) is a substrate for the human 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) which converts the 7alpha- into the 7beta-epimer through an oxido-reduction process. Research on the 11beta-HSD1 has investigated its function and structure through using native glucocorticoid substrates and known inhibitors. Other steroid substrates are also of interest. Among testosterone metabolites, 5alpha-androstane-3beta,17beta-diol (Adiol) is a substrate for the cytochrome P450 7B1 which produces 5alpha-androstane-3beta,7alpha,17beta-triol (7alpha-Adiol). This steroid may be a substrate for the 11beta-HSD1. We used recombinant yeast-expressed 11beta-HSD1 with NADP(H)-regenerating systems for examining the products obtained after incubation with 7alpha-Adiol, 7beta-Adiol or 7-oxo-Adiol. Oxidative conditions for the 11beta-HSD1 provided no trace of 7-oxo-Adiol but the inter-conversion of 7alpha- and 7beta-hydroxy-Adiol with V(max)/K(M) (pmol min(-1) microg(-1)/microM) values of 2 and 0.5, respectively. This state was maintained under reductive conditions. The use of a 7-oxo-Adiol substrate under reductive conditions led to the production of both 7alpha- and 7beta-hydroxy-Adiol with V(max)/K(M) values of 3.43 and 0.22, respectively. These findings support the hypothesis that the oxido-reductase and epimerase activities of 11beta-HSD1 depend on the positioning of the steroid substrates within the active site and may provide insight into its fine structure and mechanism of action.  相似文献   
985.
Male Metamasius spinolae (Gylh.) produce several volatile compounds that are likely constituents of its aggregation pheromone. These compounds were identified by volatile collections and gas chromatography (GC), followed by coupled gas chromatography-mass spectrometry (GC-MS), as 2-methyl-4-heptanone [1], 6-methyl-2hepten-4-one [2], and 2-hydroxy-2-methyl-4-heptanone [3]. Preliminary field experiments using synthetic racemates of these compounds showed that significantly more adult cactus weevils were caught in traps baited with the major single compound three or the 2 + 3 binary combination than in unbaited control traps. However, highest trap efficacy occurred with the 1 + 2 binary combination and a blend of all three synthetic compounds plus prickly pear. Potential uses for the cactus weevil pheromone and possible ways to increase trap captures are discussed.  相似文献   
986.
Analysis of actin remodeling in live cells and tissues has become an increasingly important tool to study actin-dependent cellular processes. To facilitate these experiments in the mouse we have generated a GFP-actin-expressing line (huGE) by knock-in of the GFP-actin gene into the profilin 1 locus. Here we show that GFP-actin is expressed throughout embryonic development and in all tissues except skeletal muscle, in a pattern similar to profilin 1. Particularly high expression of GFP-actin was observed in bone marrow and all blood cells. The GFP-actin fusion protein is functional as shown by its co-localization with endogenous actin in F-actin-rich structures. Therefore, the huGE mouse line provides a novel tool to monitor actin dynamics in mouse embryos and a wide range of organs.  相似文献   
987.
Gastric emptying is a major determinant of glycemia, gastrointestinal hormone release, and appetite. We determined the effects of different intraduodenal glucose loads on glycemia, insulinemia, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin (CCK), antropyloroduodenal motility, and energy intake in healthy subjects. Blood glucose, plasma hormone, and antropyloroduodenal motor responses to 120-min intraduodenal infusions of glucose at 1) 1 ("G1"), 2) 2 ("G2"), and 3) 4 ("G4") kcal/min or of 4) saline ("control") were measured in 10 healthy males in double-blind, randomized fashion. Immediately after each infusion, energy intake at a buffet meal was quantified. Blood glucose rose in response to all glucose infusions (P < 0.05 vs. control), with the effect of G4 and G2 being greater than that of G1 (P < 0.05) but with no difference between G2 and G4. The rises in insulin, GLP-1, GIP, and CCK were related to the glucose load (r > 0.82, P < 0.05). All glucose infusions suppressed antral (P < 0.05), but only G4 decreased duodenal, pressure waves (P < 0.01), resulted in a sustained stimulation of basal pyloric pressure (P < 0.01), and decreased energy intake (P < 0.05). In conclusion, variations in duodenal glucose loads have differential effects on blood glucose, plasma insulin, GLP-1, GIP and CCK, antropyloroduodenal motility, and energy intake in healthy subjects. These observations have implications for strategies to minimize postprandial glycemic excursions in type 2 diabetes.  相似文献   
988.
Sex differences exist in a variety of cardiovascular disorders. Sex hormones have been shown to mediate pulmonary artery (PA) vasodilation. However, the effects of fluctuations in physiological sex hormone levels due to sex and menstrual cycle on PA vasoreactivity have not been clearly established yet. We hypothesized that sex and menstrual cycle affect PA vasoconstriction under both normoxic and hypoxic conditions. Isometric force displacement was measured in isolated PA rings from proestrus females (PF), estrus and diestrus females (E/DF), and male (M) Sprague-Dawley rats. The vasoconstrictor response under normoxic conditions (organ bath bubbled with 95% O(2)-5% CO(2)) was measured after stimulation with 80 mmol/l KCl and 1 mumol/l phenylephrine. Hypoxia was generated by changing the gas to 95% N(2)-5% CO(2). PA rings from PF demonstrated an attenuated vasoconstrictor response to KCl compared with rings from E/DF (75.58 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.01). Rings from M also exhibited attenuated KCl-induced vasoconstriction compared with E/DF (79.34 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.05). PA rings from PF exhibited an attenuated vasoconstrictor response to phenylephrine compared with E/DF (59.61 +/- 2.98% vs. 70.03 +/- 4.61%, P < 0.05). While the maximum PA vasodilation during hypoxia did not differ between PF, E/DF, and M, phase II of hypoxic pulmonary vasoconstriction was markedly diminished in the PA from PF (64.10 +/- 7.10% vs. 83.91 +/- 5.97% in M, P < 0.05). We conclude that sex and menstrual cycle affect PA vasoconstriction in isolated PA rings. Even physiological increases in circulating estrogen levels attenuate PA vasoconstriction under both normoxic and hypoxic conditions.  相似文献   
989.
Postprandial hypotension is an important clinical problem, particularly in the elderly. 5-Hydroxytryptamine3 (5-HT3) mechanisms may be important in the regulation of splanchnic blood flow and blood pressure (BP), and in mediating the effects of small intestinal nutrients on gastrointestinal motility. The aims of this study were to evaluate the effects of the 5-HT3 antagonist granisetron on the BP, heart rate (HR), and antropyloroduodenal (APD) motility responses to intraduodenal glucose in healthy older subjects. Ten subjects (5 male, 5 female, aged 65-76 yr) received an intraduodenal glucose infusion (3 kcal/min) for 60 min (t = 0-60 min), followed by intraduodenal saline for a further 60 min (t = 60-120 min) on 2 days. Granisetron (10 microg/kg) or control (saline) was given intravenously at t = -25 min. BP (systolic and diastolic), HR, and APD pressures were measured. Pressure waves in the duodenal channel closest ("local") to the infusion site were quantified separately. During intraduodenal glucose, there were falls in systolic and diastolic BP and a rise in HR (P < 0.0001 for all); granisetron had no effect on these responses. Granisetron suppressed the number and amplitude (P < 0.05 for both) of local duodenal pressures during intraduodenal glucose. Otherwise, the effects of intraduodenal glucose on APD motility did not differ between study days. We conclude that in healthy older subjects, 5-HT3 mechanisms modulate the local duodenal motor effects of, but not the cardiovascular responses to, small intestinal glucose.  相似文献   
990.
Microbial products serving as superantigens (SAgs) have been implicated in triggering various T cell-mediated chronic inflammatory disorders, including severe asthma. Given earlier evidence demonstrating that airway smooth muscle (ASM) cells express MHC class II molecules, we investigated whether ASM can present SAg to resting CD4(+) T cells, and further examined whether this action reciprocally elicits proasthmatic changes in ASM responsiveness. Coincubation of CD4(+) T cells with human ASM cells pulsed with the SAg, staphylococcal enterotoxin A (SEA), elicited adherence and clustering of class II and CD3 molecules at the ASM/T cell interface, indicative of immunological synapse formation, in association with T cell activation. This ASM/T cell interaction evoked up-regulated mRNA expression and pronounced release of the Th2-type cytokine, IL-13, into the coculture medium, which was MHC class II dependent. Moreover, when administering the conditioned medium from the SEA-stimulated ASM/T cell cocultures to isolated naive rabbit ASM tissues, the latter exhibited proasthmatic-like changes in their constrictor and relaxation responsiveness that were prevented by pretreating the tissues with an anti-IL-13 neutralizing Ab. Collectively, these observations are the first to demonstrate that ASM can present SAg to CD4(+) T cells, and that this MHC class II-mediated cooperative ASM/T cell interaction elicits release of IL-13 that, in turn, evokes proasthmatic changes in ASM constrictor and relaxant responsiveness. Thus, a new immuno-regulatory role for ASM is identified that potentially contributes to the pathogenesis of nonallergic (intrinsic) asthma and, accordingly, may underlie the reported association between microbial SAg exposure, T cell activation, and severe asthma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号