全文获取类型
收费全文 | 12568篇 |
免费 | 1110篇 |
国内免费 | 4篇 |
专业分类
13682篇 |
出版年
2023年 | 44篇 |
2022年 | 98篇 |
2021年 | 209篇 |
2020年 | 100篇 |
2019年 | 160篇 |
2018年 | 178篇 |
2017年 | 164篇 |
2016年 | 343篇 |
2015年 | 540篇 |
2014年 | 692篇 |
2013年 | 786篇 |
2012年 | 1006篇 |
2011年 | 985篇 |
2010年 | 654篇 |
2009年 | 566篇 |
2008年 | 825篇 |
2007年 | 809篇 |
2006年 | 780篇 |
2005年 | 708篇 |
2004年 | 674篇 |
2003年 | 690篇 |
2002年 | 633篇 |
2001年 | 95篇 |
2000年 | 80篇 |
1999年 | 125篇 |
1998年 | 204篇 |
1997年 | 125篇 |
1996年 | 114篇 |
1995年 | 129篇 |
1994年 | 97篇 |
1993年 | 117篇 |
1992年 | 103篇 |
1991年 | 70篇 |
1990年 | 70篇 |
1989年 | 56篇 |
1988年 | 55篇 |
1987年 | 39篇 |
1986年 | 50篇 |
1985年 | 49篇 |
1984年 | 63篇 |
1983年 | 40篇 |
1982年 | 52篇 |
1981年 | 42篇 |
1980年 | 33篇 |
1979年 | 27篇 |
1978年 | 23篇 |
1977年 | 35篇 |
1976年 | 23篇 |
1974年 | 25篇 |
1973年 | 18篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Ng L Grodzinsky AJ Patwari P Sandy J Plaas A Ortiz C 《Journal of structural biology》2003,143(3):242-257
Atomic force microscopy was used in ambient conditions to directly image dense and sparse monolayers of bovine fetal epiphyseal and mature nasal cartilage aggrecan macromolecules adsorbed on mica substrates. Distinct resolution of the non-glycosylated N-terminal region from the glycosaminoglycan (GAG) brush of individual aggrecan monomers was achieved, as well as nanometer-scale resolution of individual GAG chain conformation and spacing. Fetal aggrecan core protein trace length (398+/-57 nm) and end-to-end length (257+/-87 nm) were both larger than that of mature aggrecan (352+/-88 and 226+/-81 nm, respectively). Similarly, fetal aggrecan GAG chain trace length (41+/-7 nm) and end-to-end (32+/-8 nm) length were both larger than that of mature aggrecan GAG (32+/-5 and 26+/-7 nm, respectively). GAG-GAG spacing along the core protein was significantly smaller in fetal compared to mature aggrecan (3.2+/-0.8 and 4.4+/-1.2nm, respectively). Together, these differences between the two aggrecan types were likely responsible for the greater persistence length of the fetal aggrecan (110 nm) compared to mature aggrecan (82 nm) calculated using the worm-like chain model. Measured dimensions and polymer statistical analyses were used in conjunction with the results of Western analyses, chromatographic, and carbohydrate electrophoresis measurements to better understand the dependence of aggrecan structure and properties on its constituent GAG chains. 相似文献
102.
Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1 下载免费PDF全文
Yang LT Nichols JT Yao C Manilay JO Robey EA Weinmaster G 《Molecular biology of the cell》2005,16(2):927-942
Fringe O-fucose-beta1,3-N-acetylglucosaminyltransferases modulate Notch signaling by potentiating signaling induced by Delta-like ligands, while inhibiting signaling induced by Serrate/Jagged1 ligands. Based on binding studies, the differential effects of Drosophila fringe (DFng) on Notch signaling are thought to result from alterations in Notch glycosylation that enhance binding of Delta to Notch but reduce Serrate binding. Here, we report that expression of mammalian fringe proteins (Lunatic [LFng], Manic [MFng], or Radical [RFng] Fringe) increased Delta1 binding and activation of Notch1 signaling in 293T and NIH 3T3 cells. Although Jagged1-induced signaling was suppressed by LFng and MFng, RFng enhanced signaling induced by either Delta1 or Jagged1, underscoring the diversity of mammalian fringe glycosyltransferases in regulating signaling downstream of different ligand-receptor combinations. Interestingly, suppression of Jagged1-induced Notch1 signaling did not correlate with changes in Jagged1 binding as found for Delta1. Our data support the idea that fringe glycosylation increases Delta1 binding to potentiate signaling, but we propose that although fringe glycosylation does not reduce Jagged1 binding to Notch1, the resultant ligand-receptor interactions do not effectively promote Notch1 proteolysis required for activation of downstream signaling events. 相似文献
103.
Ogunjimi AA Briant DJ Pece-Barbara N Le Roy C Di Guglielmo GM Kavsak P Rasmussen RK Seet BT Sicheri F Wrana JL 《Molecular cell》2005,19(3):297-308
The conjugation of ubiquitin to proteins involves a cascade of activating (E1), conjugating (E2), and ubiquitin-ligating (E3) type enzymes that commonly signal protein destruction. In TGFbeta signaling the inhibitory protein Smad7 recruits Smurf2, an E3 of the C2-WW-HECT domain class, to the TGFbeta receptor complex to facilitate receptor degradation. Here, we demonstrate that the amino-terminal domain (NTD) of Smad7 stimulates Smurf activity by recruiting the E2, UbcH7, to the HECT domain. A 2.1 A resolution X-ray crystal structure of the Smurf2 HECT domain reveals that it has a suboptimal E2 binding pocket that could be optimized by mutagenesis to generate a HECT domain that functions independently of Smad7 and potently inhibits TGFbeta signaling. Thus, E2 enzyme recognition by an E3 HECT enzyme is not constitutively competent and provides a point of control for regulating the ubiquitin ligase activity through the action of auxiliary proteins. 相似文献
104.
Hamdan FF Gauthier J Araki Y Lin DT Yoshizawa Y Higashi K Park AR Spiegelman D Dobrzeniecka S Piton A Tomitori H Daoud H Massicotte C Henrion E Diallo O;SD Group Shekarabi M Marineau C Shevell M Maranda B Mitchell G Nadeau A D'Anjou G Vanasse M Srour M Lafrenière RG Drapeau P Lacaille JC Kim E Lee JR Igarashi K Huganir RL Rouleau GA Michaud JL 《American journal of human genetics》2011,(3):1427-316
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder. 相似文献
105.
The explosion in gene sequence data and technological breakthroughs in protein structure determination inspired the launch of structural genomics (SG) initiatives. An often stated goal of structural genomics is the high-throughput structural characterisation of all protein sequence families, with the long-term hope of significantly impacting on the life sciences, biotechnology and drug discovery. Here, we present a comprehensive analysis of solved SG targets to assess progress of these initiatives. Eleven consortia have contributed 316 non-redundant entries and 323 protein chains to the Protein Data Bank (PDB), and 459 and 393 domains to the CATH and SCOP structure classifications, respectively. The quality and size of these proteins are comparable to those solved in traditional structural biology and, despite huge scope for duplicated efforts, only 14% of targets have a close homologue (>/=30% sequence identity) solved by another consortium. Analysis of CATH and SCOP revealed the significant contribution that structural genomics is making to the coverage of superfamilies and folds. A total of 67% of SG domains in CATH are unique, lacking an already characterised close homologue in the PDB, whereas only 21% of non-SG domains are unique. For 29% of domains, structure determination revealed a remote evolutionary relationship not apparent from sequence, and 19% and 11% contributed new superfamilies and folds. The secondary structure class, fold and superfamily distributions of this dataset reflect those of the genomes. The domains fall into 172 different folds and 259 superfamilies in CATH but the distribution is highly skewed. The most populous of these are those that recur most frequently in the genomes. Whilst 11% of superfamilies are bacteria-specific, most are common to all three superkingdoms of life and together the 316 PDB entries have provided new and reliable homology models for 9287 non-redundant gene sequences in 206 completely sequenced genomes. From the perspective of this analysis, it appears that structural genomics is on track to be a success, and it is hoped that this work will inform future directions of the field. 相似文献
106.
Sophie Pennetier Christine Perreau Svetlana Uzbekova Aurore Thélie Bernadette Delaleu Pascal Mermillod Rozenn Dalbiès-Tran 《BMC developmental biology》2006,6(1):26
Background
Mater (Maternal Antigen that Embryos Require), also known as Nalp5 (NACHT, leucine rich repeat and PYD containing 5), is an oocyte-specific maternal effect gene required for early embryonic development beyond the two-cell stage in mouse. We previously characterized the bovine orthologue MATER as an oocyte marker gene in cattle, and this gene was recently assigned to a QTL region for reproductive traits. 相似文献107.
Schoehn G Vellieux FM Asunción Durá M Receveur-Bréchot V Fabry CM Ruigrok RW Ebel C Roussel A Franzetti B 《The Journal of biological chemistry》2006,281(47):36327-36337
Cellular proteolysis involves large oligomeric peptidases that play key roles in the regulation of many cellular processes. The cobalt-activated peptidase TET1 from the hyperthermophilic Archaea Pyrococcus horikoshii (PhTET1) was found to assemble as a 12-subunit tetrahedron and as a 24-subunit octahedral particle. Both quaternary structures were solved by combining x-ray crystallography and cryoelectron microscopy data. The internal organization of the PhTET1 particles reveals highly self-compartmentalized systems made of networks of access channels extended by vast catalytic chambers. The two edifices display aminopeptidase activity, and their organizations indicate substrate navigation mechanisms different from those described in other large peptidase complexes. Compared with the tetrahedron, the octahedron forms a more expanded hollow structure, representing a new type of giant peptidase complex. PhTET1 assembles into two different quaternary structures because of quasi-equivalent contacts that previously have only been identified in viral capsids. 相似文献
108.
Felix Schaller Antonio M. Fernandes Christine Hodler Claudia Münch Juan J. Pasantes Wolfram Rietschel Werner Schempp 《PloS one》2010,5(9)
The male-specific regions of the Y chromosome (MSY) of the human and the chimpanzee (Pan troglodytes) are fully sequenced. The most striking difference is the dramatic rearrangement of large parts of their respective MSYs. These non-recombining regions include ampliconic gene families that are known to be important for male reproduction,and are consequently under significant selective pressure. However, whether the published Y-chromosomal pattern of ampliconic fertility genes is invariable within P. troglodytes is an open but fundamental question pertinent to discussions of the evolutionary fate of the Y chromosome in different primate mating systems. To solve this question we applied fluorescence in situ hybridisation (FISH) of testis-specific expressed ampliconic fertility genes to metaphase Y chromosomes of 17 chimpanzees derived from 11 wild-born males and 16 bonobos representing seven wild-born males. We show that of eleven P. troglodytes Y-chromosomal lines, ten Y-chromosomal variants were detected based on the number and arrangement of the ampliconic fertility genes DAZ (deleted in azoospermia) and CDY (chromodomain protein Y)—a so-far never-described variation of a species'' Y chromosome. In marked contrast, no variation was evident among seven Y-chromosomal lines of the bonobo, P. paniscus, the chimpanzee''s closest living relative. Although, loss of variation of the Y chromosome in the bonobo by a founder effect or genetic drift cannot be excluded, these contrasting patterns might be explained in the context of the species'' markedly different social and mating behaviour. In chimpanzees, multiple males copulate with a receptive female during a short period of visible anogenital swelling, and this may place significant selection on fertility genes. In bonobos, however, female mate choice may make sperm competition redundant (leading to monomorphism of fertility genes), since ovulation in this species is concealed by the prolonged anogenital swelling, and because female bonobos can occupy high-ranking positions in the group and are thus able to determine mate choice more freely. 相似文献
109.
Effect of electric field vectoriality on electrically mediated gene delivery in mammalian cells 总被引:1,自引:0,他引:1
Faurie C Phez E Golzio M Vossen C Lesbordes JC Delteil C Teissié J Rols MP 《Biochimica et biophysica acta》2004,1665(1-2):92-100
Electropermeabilization is a nonviral method used to transfer genes into living cells. Up to now, the mechanism is still to be elucidated. Since cell permeabilization, a prerequired for gene transfection, is triggerred by electric field, its characteristics should depend on its vectorial properties. The present investigation addresses the effect of pulse polarity and orientation on membrane permeabilization and gene delivery by electric pulses applied to cultured mammalian cells. This has been directly observed at the single-cell level by using digitized fluorescence microscopy. While cell permeabilization is only slightly affected by reversing the polarity of the electric pulses or by changing the orientation of pulses, transfection level increases are observed. These last effects are due to an increase in the cell membrane area where DNA interacts. Fluorescently labelled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized cell surface is stable and is not affected by pulses of reversed polarities. Under such conditions, DNA interacts with the two sites of the cell facing the two electrodes. When changing both the pulse polarity and their direction, DNA interacts with the whole membrane cell surface. This is associated with a huge increase in gene expression. This present study demonstrates the relationship between the DNA/membrane surface interaction and the gene transfer efficiency, and it allows to define the experimental conditions to optimize the yield of transfection of mammalian cells. 相似文献
110.
Mary W. Corrigan Christine L. Kerwin-Iosue Alexander S. Kuczmarski Kunj B. Amin Dennis D. Wykoff 《PloS one》2013,8(7)
In vivo assembly of plasmids has become an increasingly used process, as high throughput studies in molecular biology seek to examine gene function. In this study, we investigated the plasmid construction technique called gap repair cloning (GRC) in two closely related species of yeast – Saccharomyces cerevisiae and Candida glabrata. GRC utilizes homologous recombination (HR) activity to join a linear vector and a linear piece of DNA that contains base pair homology. We demonstrate that a minimum of 20 bp of homology on each side of the linear DNA is required for GRC to occur with at least 10% efficiency. Between the two species, we determine that S. cerevisiae is slightly more efficient at performing GRC. GRC is less efficient in rad52 deletion mutants, which are defective in HR in both species. In dnl4 deletion mutants, which perform less non-homologous end joining (NHEJ), the frequency of GRC increases in C. glabrata, whereas GRC frequency only minimally increases in S. cerevisiae, suggesting that NHEJ is more prevalent in C. glabrata. Our studies allow for a model of the fate of linear DNA when transformed into yeast cells. This model is not the same for both species. Most significantly, during GRC, C. glabrata performs NHEJ activity at a detectable rate (>5%), while S. cerevisiae does not. Our model suggests that S. cerevisiae is more efficient at HR because NHEJ is less prevalent than in C. glabrata. This work demonstrates the determinants for GRC and that while C. glabrata has a lower efficiency of GRC, this species still provides a viable option for GRC. 相似文献