首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12590篇
  免费   1107篇
  国内免费   4篇
  13701篇
  2023年   44篇
  2022年   98篇
  2021年   209篇
  2020年   100篇
  2019年   160篇
  2018年   178篇
  2017年   164篇
  2016年   343篇
  2015年   540篇
  2014年   692篇
  2013年   787篇
  2012年   1006篇
  2011年   985篇
  2010年   655篇
  2009年   568篇
  2008年   826篇
  2007年   809篇
  2006年   781篇
  2005年   709篇
  2004年   675篇
  2003年   691篇
  2002年   634篇
  2001年   97篇
  2000年   81篇
  1999年   125篇
  1998年   204篇
  1997年   123篇
  1996年   112篇
  1995年   129篇
  1994年   97篇
  1993年   117篇
  1992年   104篇
  1991年   70篇
  1990年   69篇
  1989年   56篇
  1988年   55篇
  1987年   39篇
  1986年   51篇
  1985年   50篇
  1984年   64篇
  1983年   41篇
  1982年   53篇
  1981年   42篇
  1980年   33篇
  1979年   27篇
  1978年   24篇
  1977年   35篇
  1976年   23篇
  1974年   25篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
Animals living in extreme environments with predictable seasonality may have important life history events correlated to favourable periods. These animals pass critical life stages in protected habitats, especially during early life, often receiving parental care. It is thus hypothesized that juveniles rely on protective microhabitats provided by their parents, becoming independent only during favourable seasons. Semi-terrestrial crayfish Parastacus pugnax inhabit burrows in highly seasonal and predictable environments, thus being well suited to test this hypothesis. Following marked burrows and individual crayfish we examined the life history patterns of P. pugnax in their natural environment to test the predictions that (i) burrowing activity is higher during the wet season, (ii) reproductive events occur during favourable seasons and (iii) juveniles only disperse after reaching larger sizes. There was little or no burrowing activity during the dry season, when soil was more compact, but burrows became wider and had more openings during the wet season. After hatching, juveniles cohabited with adults for at least 4 months during the dry season. During this period juveniles grew considerably, starting independent lives during the wet season. These results suggest that the prolonged parent-offspring cohabitation evolved in response to the predictable seasonal variations in the crayfish habitat.  相似文献   
43.
Cerebral cavernous malformations (CCM) are sporadic or inherited vascular lesions of the central nervous system characterized by dilated, thin-walled, leaky vessels. Linkage studies have mapped autosomal dominant mutations to three loci: ccm1 (KRIT1), ccm2 (OSM), and ccm3 (PDCD10). All three proteins appear to be scaffolds or adaptor proteins, as no enzymatic function can be attributed to them. Our previous results demonstrated that OSM is a scaffold for the assembly of the GTPase Rac and the MAPK kinase kinase MEKK3, for the hyperosmotic stress-dependent activation of p38 MAPK. Herein, we show that the three CCM proteins are members of a larger signaling complex. To define this complex, epitope-tagged wild type OSM or OSM harboring the mutation of F217-->A, which renders the OSM phosphotyrosine binding (PTB) domain unable to bind KRIT1, were stably introduced into RAW264.7 mouse macrophages. FLAG-OSM or FLAG-OSMF217A and the associated complex members were purified by immunoprecipitation using anti-FLAG antibody. OSM binding partners were identified by gel-based methods combined with electrospray ionization-MS or by multidimensional protein identification technology (MudPIT). Previously identified proteins that associate with OSM including KRIT1, MEKK3, Rac, and the KRIT1-binding protein ICAP-1 were found in the immunoprecipitates. In addition, we show for the first time that PDCD10 binds to OSM and is found in cellular CCM complexes. Other prominent proteins that bound the CCM complex include EF1A1, RIN2, and tubulin, with each interaction disrupted with the OSMF217A mutant protein. We further show that PDCD10 binds phosphatidylinositol di- and triphosphates and OSM binds phosphatidylinositol monophosphates. The findings define the targeting of the CCM complex to membranes and to proteins regulating trafficking and the cytoskeleton.  相似文献   
44.
There are more than 200 completed genomes and over 1 million nonredundant sequences in public repositories. Although the structural data are more sparse (approximately 13,000 nonredundant structures solved to date), several powerful sequence-based methodologies now allow these structures to be mapped onto related regions in a significant proportion of genome sequences. We review a number of publicly available strategies for providing structural annotations for genome sequences, and we describe the protocol adopted to provide CATH structural annotations for completed genomes. In particular, we assess the performance of several sequence-based protocols employing Hidden Markov model (HMM) technologies for superfamily recognition, including a new approach (SAMOSA [sequence augmented models of structure alignments]) that exploits multiple structural alignments from the CATH domain structure database when building the models. Using a data set of remote homologs detected by structure comparison and manually validated in CATH, a single-seed HMM library was able to recognize 76% of the data set. Including the SAMOSA models in the HMM library showed little gain in homolog recognition, although a slight improvement in alignment quality was observed for very remote homologs. However, using an expanded 1D-HMM library, CATH-ISL increased the coverage to 86%. The single-seed HMM library has been used to annotate the protein sequences of 120 genomes from all three major kingdoms, allowing up to 70% of the genes or partial genes to be assigned to CATH superfamilies. It has also been used to recruit sequences from Swiss-Prot and TrEMBL into CATH domain superfamilies, expanding the CATH database eightfold.  相似文献   
45.
46.
For over the past 20 years, a remarkable development in the study and search of natural products has been observed. This is linked to a new market trend towards ecology and also due to new regulations. This could be a rupture, but also a real booster for creativity. Usually, in the flavor and fragrance field, creativity was boosted by the arrival of new synthetic molecules. Naturals remained the traditional, century‐old products, protected by secrecy and specific know‐how from each company. Regulatory restrictions or eco‐friendly certification constraints like hexane‐free processes triggered an important brainstorming in the industry. As a result, we developed new eco‐friendly processes including supercritical CO2 extraction, allowing fresh plants to be used to obtain industrial flower extracts (Jasmine Grandiflorum, Jasmine Sambac, Orange blossom). These extracts are analyzed by GC, GC/MS, GC? O, and HPTLC techniques. New or unusual raw materials can also be explored, but the resulting extracts have to be tested for safety reasons. Some examples are described.  相似文献   
47.
ABSTRACT

This article reviews the role of microbial biofilms in infection, and the antimicrobial chemical diversity of marine macroalgae and their associated microbiomes. Antimicrobial resistance (AMR) represents one of the major health threats faced by humanity over the next few years. To prevent a global epidemic of antimicrobial-resistant infections, the discovery of new antimicrobials and antibiotics, better anti-infection strategies and diagnostics, and changes to our current use of antibiotics have all become of paramount importance. Numerous studies investigating the bioactivities of seaweed extracts as well as their secondary and primary metabolites highlight the vast biochemical diversity of seaweeds, with new modes of action making them ideal sources for the discovery of novel antimicrobial bioactive compounds of pharmaceutical interest. In recent years, researchers have focused on characterizing the endophytic and epiphytic microbiomes of various algal species in an attempt to elucidate host-microbe interactions as well as to understand the function of microbial communities. Although environmental and host-associated factors crucially shape microbial composition, microbial mutualistic and obligate symbionts are often found to play a fundamental role in regulating many aspects of host fitness involving ecophysiology and metabolism. In particular, algal ‘core’ epiphytic bacterial communities play an important role in the protection of surfaces from biofouling, pathogens and grazers through the production of bioactive metabolites. Together, marine macroalgae and their associated microbiomes represent unique biological systems offering great potential for the isolation and identification of novel compounds and strategies to counteract the rise and dissemination of AMR.  相似文献   
48.
49.
A recombinant dog gastric lipase with therapeutic potential for the treatment of exocrine pancreatic insufficiency was expressed in transgenic tobacco plants. We targeted the protein using two different signal sequences for either vacuolar retention or secretion. In both cases, an active glycosylated recombinant protein was obtained. The recombinant enzymes and the native enzyme displayed similar properties including acid resistance and acidic optimum pH. The proteolytic maturation and the specific activity of the recombinant proteins, however, were found to be dependent on subcellular compartmentalization. Expression levels of recombinant dog gastric lipase were about 5% and 7% of acid extractable plant proteins for vacuolar retention and secretion respectively. This expression system already has allowed the production of tens of grams of purified lipase through open-field culture of transgenic tobacco plants.  相似文献   
50.
Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from “pyophage”, a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号