首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14787篇
  免费   1015篇
  国内免费   5篇
  15807篇
  2023年   51篇
  2022年   107篇
  2021年   234篇
  2020年   119篇
  2019年   202篇
  2018年   196篇
  2017年   174篇
  2016年   393篇
  2015年   581篇
  2014年   757篇
  2013年   865篇
  2012年   1097篇
  2011年   1075篇
  2010年   709篇
  2009年   631篇
  2008年   902篇
  2007年   872篇
  2006年   841篇
  2005年   769篇
  2004年   748篇
  2003年   758篇
  2002年   704篇
  2001年   145篇
  2000年   139篇
  1999年   169篇
  1998年   222篇
  1997年   147篇
  1996年   126篇
  1995年   144篇
  1994年   115篇
  1993年   134篇
  1992年   137篇
  1991年   99篇
  1990年   87篇
  1989年   82篇
  1988年   71篇
  1987年   55篇
  1986年   74篇
  1985年   69篇
  1984年   84篇
  1983年   48篇
  1982年   65篇
  1981年   50篇
  1980年   45篇
  1979年   53篇
  1978年   41篇
  1977年   54篇
  1976年   36篇
  1974年   41篇
  1973年   43篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Sensory cilia and intraflagellar transport (IFT), a pathway essential for ciliogenesis, play important roles in embryonic development and cell differentiation. In vertebrate photoreceptors IFT is required for the early development of ciliated sensory outer segments (OS), an elaborate organelle that sequesters the many proteins comprising the phototransduction machinery. As in other cilia and flagella, heterotrimeric members of the kinesin 2 family have been implicated as the anterograde IFT motor in OS. However, in Caenorhabditis elegans, OSM-3, a homodimeric kinesin 2 motor, plays an essential role in some, but not all sensory cilia. Kif17, a vertebrate OSM-3 homologue, is known for its role in dendritic trafficking in neurons, but a function in ciliogenesis has not been determined. We show that in zebrafish Kif17 is widely expressed in the nervous system and retina. In photoreceptors Kif17 co-localizes with IFT proteins within the OS, and co-immunoprecipitates with IFT proteins. Knockdown of Kif17 has little if any effect in early embryogenesis, including the formation of motile sensory cilia in the pronephros. However, OS formation and targeting of the visual pigment protein is severely disrupted. Our analysis shows that Kif17 is essential for photoreceptor OS development, and suggests that Kif17 plays a cell type specific role in vertebrate ciliogenesis.  相似文献   
52.
The rates of mineralization processes influence C sequestration and soil fertility, but despite their importance for ecosystem functioning, C, N and P net mineralization rates are seldom investigated together. Hence, we studied the relationships between net mineralization rates and organic matter stoichiometry in an 8-week incubation experiment with Oi, Oe and Oa horizon material of six beech, one spruce and one pine site. We determined C, N and P net mineralization rates, organic C quality and C:N:P stoichiometry. Net N mineralization only occurred below molar organic matter C:N ratios of 40 (Oi) or 28 (Oa) and N:P ratios of 42 (Oi) or 60 (Oa), and increased with decreasing C:N and N:P ratios. Net P mineralization only occurred below C:P ratios of 1400 (Oi) and N:P ratios of 40 (Oi), and increased with decreasing C:P and N:P ratios. Net N and P mineralization were strongly positively correlated with each other (r = 0.64, p < 0.001), whereas correlations of both net N and net P mineralization with C mineralization were weak. The average C:N:P stoichiometry of net mineralization was 620:4:1 (beech, Oi), 15,350:5:1 (coniferous, Oi), 1520:8:1 (Oe) and 2160:36:1 (Oa). On average, ratios of C:N net mineralization were higher, and ratios of N:P net mineralization lower than organic matter C:N and N:P ratios. This difference contributed to the decrease of C:N ratios and increase of N:P ratios from the Oi to the Oa horizons. In conclusion, the study shows that C, N and P net mineralization rates were closely correlated with the organic matter stoichiometry and that these correlations were modified by the degree of decomposition of the organic matter.  相似文献   
53.
54.
Depletion of intracellular calcium stores activates store-operated calcium entry across the plasma membrane in many cells. STIM1, the putative calcium sensor in the endoplasmic reticulum, and the calcium release-activated calcium (CRAC) modulator CRACM1 (also known as Orai1) in the plasma membrane have recently been shown to be essential for controlling the store-operated CRAC current (I(CRAC)). However, individual overexpression of either protein fails to significantly amplify I(CRAC). Here, we show that STIM1 and CRACM1 interact functionally. Overexpression of both proteins greatly potentiates I(CRAC), suggesting that STIM1 and CRACM1 mutually limit store-operated currents and that CRACM1 may be the long-sought CRAC channel.  相似文献   
55.
Phenome-Wide Association Studies (PheWAS) investigate whether genetic polymorphisms associated with a phenotype are also associated with other diagnoses. In this study, we have developed new methods to perform a PheWAS based on ICD-10 codes and biological test results, and to use a quantitative trait as the selection criterion. We tested our approach on thiopurine S-methyltransferase (TPMT) activity in patients treated by thiopurine drugs. We developed 2 aggregation methods for the ICD-10 codes: an ICD-10 hierarchy and a mapping to existing ICD-9-CM based PheWAS codes. Eleven biological test results were also analyzed using discretization algorithms. We applied these methods in patients having a TPMT activity assessment from the clinical data warehouse of a French academic hospital between January 2000 and July 2013. Data after initiation of thiopurine treatment were analyzed and patient groups were compared according to their TPMT activity level. A total of 442 patient records were analyzed representing 10,252 ICD-10 codes and 72,711 biological test results. The results from the ICD-9-CM based PheWAS codes and ICD-10 hierarchy codes were concordant. Cross-validation with the biological test results allowed us to validate the ICD phenotypes. Iron-deficiency anemia and diabetes mellitus were associated with a very high TPMT activity (p = 0.0004 and p = 0.0015, respectively). We describe here an original method to perform PheWAS on a quantitative trait using both ICD-10 diagnosis codes and biological test results to identify associated phenotypes. In the field of pharmacogenomics, PheWAS allow for the identification of new subgroups of patients who require personalized clinical and therapeutic management.  相似文献   
56.
There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays.  相似文献   
57.
58.
59.
The purpose of this study was to analyze 2 different long-sprint training programs (TPs) of equal total work load, completed either with short recovery (SR) or long recovery (LR) between sets and to compare the effects of 6 long-sprint training sessions (TSs) conducted over a 2-week period on a 300-m performance. Fourteen trained subjects performed 3 pretraining maximal sprints (50-, 100-, and 300-m), were paired according to their 300-m performance, and randomly allocated to an LR or SR group, which performed 6 TSs consisting of sets of 150, 200, or 250 m. The recovery in the LR group was double that of the SR group. During the third TS and the 300-m pretest and posttest, blood pH, bicarbonate concentration ([HCO??]), excess-base (EB), and lactate concentration were recorded. Compared with a similar TS performed with SR, the LR training tends to induce a greater alteration of the acid-base balance: pH: 7.09 ± 0.08 (LR) and 7.14 ± 0.05 (SR) (p = 0.10), [HCO??]: 7.8 ± 1.9 (LR) and 9.6 ± 2.7 (SR) (p = 0.04), and EB: -21.1 ± 3.8 (LR) and -17.7 ± 2.8 (SR) (p = 0.11). A significant improvement in the 300-m performance between pre-TP and post-TP (42.45 ± 2.64 vs. 41.52 ± 2.45, p = 0.01) and significant decreases in pH (p < 0.01), EB (p < 0.001) and increase in [La] (p < 0.001) have been observed post-TP compared with those pre-TP. Although sprint training with longer recovery induces higher metabolic disturbances, both sprint training regimens allow a similar 300-m performance improvement with no concomitant significant progress in the 50- and 100-m performance.  相似文献   
60.
The Epstein-Barr Virus (EBV) -encoded EBNA2 protein, which is essential for the in vitro transformation of B-lymphocytes, interferes with cellular processes by binding to proteins via conserved sequence motifs. Its Arginine-Glycine (RG) repeat element contains either symmetrically or asymmetrically di-methylated arginine residues (SDMA and ADMA, respectively). EBNA2 binds via its SDMA-modified RG-repeat to the survival motor neurons protein (SMN) and via the ADMA-RG-repeat to the NP9 protein of the human endogenous retrovirus K (HERV-K (HML-2) Type 1). The hypothesis of this work was that the methylated RG-repeat mimics an epitope shared with cellular proteins that is used for interaction with target structures. With monoclonal antibodies against the modified RG-repeat, we indeed identified cellular homologues that apparently have the same surface structure as methylated EBNA2. With the SDMA-specific antibodies, we precipitated the Sm protein D3 (SmD3) which, like EBNA2, binds via its SDMA-modified RG-repeat to SMN. With the ADMA-specific antibodies, we precipitated the heterogeneous ribonucleoprotein K (hnRNP K). Specific binding of the ADMA- antibody to hnRNP K was demonstrated using E. coli expressed/ADMA-methylated hnRNP K. In addition, we show that EBNA2 and hnRNP K form a complex in EBV- infected B-cells. Finally, hnRNP K, when co-expressed with EBNA2, strongly enhances viral latent membrane protein 2A (LMP2A) expression by an unknown mechanism as we did not detect a direct association of hnRNP K with DNA-bound EBNA2 in gel shift experiments. Our data support the notion that the methylated surface of EBNA2 mimics the surface structure of cellular proteins to interfere with or co-opt their functional properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号