首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14449篇
  免费   1247篇
  国内免费   5篇
  2023年   43篇
  2022年   67篇
  2021年   228篇
  2020年   113篇
  2019年   184篇
  2018年   195篇
  2017年   174篇
  2016年   382篇
  2015年   581篇
  2014年   757篇
  2013年   865篇
  2012年   1097篇
  2011年   1075篇
  2010年   709篇
  2009年   631篇
  2008年   902篇
  2007年   872篇
  2006年   841篇
  2005年   769篇
  2004年   748篇
  2003年   758篇
  2002年   704篇
  2001年   145篇
  2000年   139篇
  1999年   169篇
  1998年   222篇
  1997年   147篇
  1996年   126篇
  1995年   144篇
  1994年   115篇
  1993年   134篇
  1992年   137篇
  1991年   99篇
  1990年   87篇
  1989年   82篇
  1988年   71篇
  1987年   55篇
  1986年   74篇
  1985年   69篇
  1984年   84篇
  1983年   48篇
  1982年   65篇
  1981年   50篇
  1980年   45篇
  1979年   53篇
  1978年   41篇
  1977年   54篇
  1976年   36篇
  1974年   41篇
  1973年   43篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
13.
Extracellular ATP in concentrations of 0.5 to 2.5 mM modulates TNF-induced cytolysis of L929 cells in the presence of actinomycin D. When present throughout the entire assay period, it inhibits the TNF-induced cytolysis. ADP was less active whereas AMP and GTP were nonreactive. However, inhibition was also achieved by adenosine that was nearly as active as ATP. Yet, the inhibitory effect of ATP was not due to hydrolysis by ectoenzymes to form adenosine. Thus, the nonhydrolyzable ATP analogue adenyl(beta-gamma-methylendiphosphate) was equally effective in inhibiting TNF-induced cytolysis. Moreover, no conversion of ATP into adenosine was observed during the entire assay period. However, inhibition no longer occurred when the TNF and ATP containing medium was removed after 5 h and replaced by a fresh medium containing TNF and no ATP. We now observed substantial enhancement of the TNF-induced cytolysis by ATP. Finally, treatment with N6-(R-phenylisopropyl)adenosine or with aminophylline, which are thought to downregulate adenosine receptors and to prevent binding of ligands to adenosine receptors, respectively, abolishes adenosine and ATP-mediated inhibition. Again, substantial enhancement of the TNF-induced cytolysis was observed by ATP and only a minor effect by adenosine. The results together suggest that ATP interacts with purinoceptors on the plasma membrane and is capable to enhance and inhibit TNF-induced cytolysis under appropriate conditions. The outcome of the ATP-induced modulation may be influenced by adenosine receptors.  相似文献   
14.
15.
Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient''s age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development.  相似文献   
16.
17.
The identification of quantitative trait loci (QTL) such as height and their underlying causative variants is still challenging and often requires large sample sizes. In humans hundreds of loci with small effects control the heritable portion of height variability. In domestic animals, typically only a few loci with comparatively large effects explain a major fraction of the heritability. We investigated height at withers in Shetland ponies and mapped a QTL to ECA 6 by genome-wide association (GWAS) using a small cohort of only 48 animals and the Illumina equine SNP70 BeadChip. Fine-mapping revealed a shared haplotype block of 793 kb in small Shetland ponies. The HMGA2 gene, known to be associated with height in horses and many other species, was located in the associated haplotype. After closing a gap in the equine reference genome we identified a non-synonymous variant in the first exon of HMGA2 in small Shetland ponies. The variant was predicted to affect the functionally important first AT-hook DNA binding domain of the HMGA2 protein (c.83G>A; p.G28E). We assessed the functional impact and found impaired DNA binding of a peptide with the mutant sequence in an electrophoretic mobility shift assay. This suggests that the HMGA2 variant also affects DNA binding in vivo and thus leads to reduced growth and a smaller stature in Shetland ponies. The identified HMGA2 variant also segregates in several other pony breeds but was not found in regular-sized horse breeds. We therefore conclude that we identified a quantitative trait nucleotide for height in horses.  相似文献   
18.
19.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   
20.
A major challenge for successful immunotherapy against glioma is the identification and characterization of validated targets. We have taken a bioinformatics approach towards understanding the biological context of IL-13 receptor α2 (IL13Rα2) expression in brain tumors, and its functional significance for patient survival. Querying multiple gene expression databases, we show that IL13Rα2 expression increases with glioma malignancy grade, and expression for high-grade tumors is bimodal, with approximately 58% of WHO grade IV gliomas over-expressing this receptor. By several measures, IL13Rα2 expression in patient samples and low-passage primary glioma lines most consistently correlates with the expression of signature genes defining mesenchymal subclass tumors and negatively correlates with proneural signature genes as defined by two studies. Positive associations were also noted with proliferative signature genes, whereas no consistent associations were found with either classical or neural signature genes. Probing the potential functional consequences of this mesenchymal association through IPA analysis suggests that IL13Rα2 expression is associated with activation of proinflammatory and immune pathways characteristic of mesenchymal subclass tumors. In addition, survival analyses indicate that IL13Rα2 over-expression is associated with poor patient prognosis, a single gene correlation ranking IL13Rα2 in the top ~1% of total gene expression probes with regard to survival association with WHO IV gliomas. This study better defines the functional consequences of IL13Rα2 expression by demonstrating association with mesenchymal signature gene expression and poor patient prognosis. It thus highlights the utility of IL13Rα2 as a therapeutic target, and helps define patient populations most likely to respond to immunotherapy in present and future clinical trials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号