首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12660篇
  免费   1111篇
  国内免费   4篇
  13775篇
  2023年   44篇
  2022年   98篇
  2021年   209篇
  2020年   100篇
  2019年   160篇
  2018年   178篇
  2017年   164篇
  2016年   343篇
  2015年   542篇
  2014年   694篇
  2013年   789篇
  2012年   1010篇
  2011年   989篇
  2010年   658篇
  2009年   568篇
  2008年   828篇
  2007年   812篇
  2006年   781篇
  2005年   711篇
  2004年   675篇
  2003年   691篇
  2002年   639篇
  2001年   99篇
  2000年   83篇
  1999年   128篇
  1998年   207篇
  1997年   124篇
  1996年   113篇
  1995年   132篇
  1994年   97篇
  1993年   120篇
  1992年   103篇
  1991年   71篇
  1990年   68篇
  1989年   57篇
  1988年   54篇
  1987年   40篇
  1986年   51篇
  1985年   50篇
  1984年   68篇
  1983年   40篇
  1982年   52篇
  1981年   42篇
  1980年   33篇
  1979年   27篇
  1978年   23篇
  1977年   36篇
  1976年   23篇
  1974年   25篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
32.
Summary Yeast DNA pools were prepared by ligating partial Sau3A genomic digests from strains carrying various MAL genes into the BamHI site of the yeast-Escherichia coli shuttle vector YRp7. They were used to transform recipient yeast strains that could not utilize maltose since they lacked a classical MAL gene. Transformants were obtained that could use maltose and also formed normal levels of maltase. They were unstable. They would lose the selective marker TRP1 of YRp7 alone, together with the ability to utilize maltose or only the ability to utilize maltose. The insertion of one of the plasmids was used as a hybridization probe for the others and found to share homologous sequences with all. They were then shown to contain the replication origin of the yeast 2 m circle plasmid and additional genomic digests of total yeast DNA. They hybridized at various degrees of efficiency with several bands, indicating that they were part of a family of repeated sequences. Apparently, it was the combination of the replication origin of the 2 m circles with the additional sequences that promoted maltose utilization.  相似文献   
33.
A decline in the calcium-dependent release of neurotransmitters appears to underlie the decreased neuronal function that accompanies reduced oxygen tensions (hypoxia). To determine if alterations in calcium uptake are primary to these changes, synaptosomal calcium uptake was measured in the presence of 100%, 2.5%, or 0% oxygen. Calcium uptake declined 60.2 +/- 0.1 and 82.4 +/- 2.5% with 2.5% and 0% when compared with 100% oxygen, respectively. 3,4-Diaminopyridine stimulated calcium uptake by synaptosomes when they were incubated in low-potassium media. It also diminished the hypoxic-induced decline in calcium uptake to 30.6 +/- 3.1 and 33.5 +/- 3.1% with 2.5% and 0% oxygen, respectively. External binding to the synaptosomal plasma membrane declined to 29.2 +/- 0.3 or 11.8 +/- 0.9% when the oxygen tension was reduced to 2.5% or 0% oxygen. 3,4-Diaminopyridine increased this superficial binding from 111.7 +/- 0.3 to 86.5 +/- 0.9 or 23.4 +/- 0.9% with 100%, 2.5%, or 0% oxygen when compared with 100% oxygen without 3,4-diaminopyridine, respectively. Thus, the decline in neuronal processing that accompanies acute hypoxia may be due to altered calcium homeostasis, which diminishes neurotransmitter release.  相似文献   
34.
Summary Mutants of Saccharomyces cerevisiae without detectable phosphofructokinase activity were isolated. They were partly recessive and belonged to two genes called PFK1 and PFK2. Mutants with a defect in only one of the two genes could not grow when they were transferred from a medium with a nonfermentable carbon source to a medium with glucose and antimycin A, an inhibitor of respiration. However, the same mutants could grow when antimycin A was added to such mutants after they had been adapted to the utilization of glucose. Double mutants with defects in both genes could not grow at all on glucose as the sole carbon source. Mutants with a single defect in gene PFK1 or PFK2 could form ethanol on a glucose medium. However, in contrast to wild-type cells, there was a lag period of about 2 h before ethanol could be formed after transfer from a medium with only nonfermentable carbon sources to a glucose medium. Wild-type cells under the same conditions started to produce ethanol immediately. Mutants with defects in both PFK genes could not form ethanol at all. Mutants without phosphoglucose isomerase or triosephosphate isomerase did not form ethanol either. Double mutants without phosphofructokinase and phosphoglucose isomerase accumulated large amounts of glucose-6-phosphate on a glucose medium. This suggested that the direct oxidation of glucose-6-phosphate could not provide a bypass around the phosphofructokinase reaction. On the other hand, the triosephosphate isomerase reaction was required for ethanol production. Experiments with uniformly labeled glucose and glucose labeled in positions 3 and 4 were used to determine the contribution of the different carbon atoms of glucose to the fermentative production of CO2. With only fermentation operating, only carbon atoms 3 and 4 should contribute to CO2 production. However, wild-type cells produced significant amounts of radioactivity from other carbon atoms and pfk mutants generated CO2 almost equally well from all six carbon atoms of glucose. This suggested that phosphofructokinase is a dispensable enzyme in yeast glycolysis catalyzing only part of the glycolytic flux.  相似文献   
35.
36.
37.
The role of ribonucleic acid (RNA) synthesis in the development of sporangia in the saprolegniaceous mold Achlya was studied. Methods were developed for growing and treating large populations of mycelia so that the hyphal tips would differentiate into sporangia with considerable synchrony. Under the starvation conditions imposed for the differentiation of sporangia, net RNA, deoxyribonucleic acid (DNA), and protein synthesis ceased. However, incorporation of radioactive precursors into RNA continued at a high rate throughout the period of differentiation, showing that the enzymatic mechanism for RNA synthesis was still in an active state. Actinomycin D inhibited the differentiation of sporangia and the incorporation of labeled precursors into RNA. The level of actinomycin used did not inhibit the normal outgrowth and branching of the mycelia that occurred during differentiation. Thus, DNA-dependent RNA synthesis was required for the differentiation of sporangia. Sucrose gradient analysis of newly synthesized RNA showed that only the ribosomal and soluble fractions of RNA were labeled during vegetative growth. During the differentiation of sporangia, ribosomal and soluble RNA fractions were also labeled, and, in addition, a heterodisperse fraction of labeled RNA which was heavier than ribosomal RNA appeared; this fraction was not evident in the newly synthesized RNA from vegetative mycelia.  相似文献   
38.
39.
The development and structure of secondary haustoria of Nuytsia floribunda are described and compared with other Santalalean haustoria. After establishing contact with the host root, cortical folds of the haustorium grow around the root in separate directions and fuse forming a ring around it. At an early stage of development, meristematic tissue differentiates in the interior proximal part of the haustorium. Zones of collapsed layers are present in the outer cortical region. Subsequently, in the proximal part, two vascular cores, two lysigenous cavities and extensive masses of sclerenchyma develop prior to penetration of the host root. The sclerenchymatous cells form a characteristic structure, described as the sclerenchyma prong. During penetration the intrusive part of the haustorium reaches not only the host xylem but continues growing downwards until it entirely splits the host root. Comparable to a guillotine, the sclerenchyma prong is directly involved in this remarkable process. The sclerenchyma prong finally lies in the distal part of the haustorium. Following this mechanical slicing of the host root, tube-like cells of the intrusive part actively penetrate the host xylem in an axial direction.  相似文献   
40.
The cytotoxicity of many xenobiotics is related to their ability to undergo redox reactions and iron dependent free radical reactions. We have measured the ability of a number of redox active compounds to release iron from the cellular iron storage protein, ferritin. Compounds were reduced to their corresponding radicals with xanthine oxidase/hypoxanthine under N2 and the release of Fe2+ was monitored by complexation with ferrozine. Ferritin iron was released by a number of bipyridyl radicals including those derived from diquat and paraquat, the anthracycline radicals of adriamycin, daunorubicin and epirubicin, the semiquinones of anthraquinone-2-sulphonate, 1,5 and 2,6-dihydroxyanthraquinone, 1-hydroxyanthraquinone, purpurin, and plumbagin, and the nitroaromatic radicals of nitrofurantoin and metronidazole. In each case, iron release was more efficient than with an equivalent flux of superoxide. Introduction of air decreased the rate of iron release, presumably because the organic radicals reacted with O2 to form superoxide. In air, iron release was inhibited by superoxide dismutase. Semiquinones of menadione, benzoquinone, duroquinone, anthraquinone 1,5 and 2,6-disulphonate, 1,4 naphthoquinone-2-sulphonate and naphthoquinone, when formed under N2, were unable to release ferrin iron. In air, these systems gave low rates of superoxide dismutase-inhibitible iron release. Of the compounds investigated, those with a single electron reduction potential less than that of ferritin were able to release ferritin iron.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号