首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12906篇
  免费   1157篇
  国内免费   4篇
  2023年   45篇
  2022年   99篇
  2021年   213篇
  2020年   102篇
  2019年   165篇
  2018年   184篇
  2017年   166篇
  2016年   345篇
  2015年   545篇
  2014年   700篇
  2013年   794篇
  2012年   1027篇
  2011年   1000篇
  2010年   657篇
  2009年   577篇
  2008年   832篇
  2007年   819篇
  2006年   789篇
  2005年   710篇
  2004年   681篇
  2003年   697篇
  2002年   644篇
  2001年   107篇
  2000年   87篇
  1999年   134篇
  1998年   211篇
  1997年   127篇
  1996年   117篇
  1995年   134篇
  1994年   101篇
  1993年   124篇
  1992年   111篇
  1991年   82篇
  1990年   77篇
  1989年   66篇
  1988年   59篇
  1987年   53篇
  1986年   53篇
  1985年   59篇
  1984年   69篇
  1983年   47篇
  1982年   58篇
  1981年   45篇
  1980年   37篇
  1979年   33篇
  1978年   30篇
  1977年   38篇
  1976年   26篇
  1974年   36篇
  1973年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
BackgroundIn Brazil, case-fatality from visceral leishmaniasis (VL) is high and characterized by wide differences between the various political-economic units, the federated units (FUs). This study was designed to investigate the association between factors at the both FU and individual levels with the risk of dying from VL, after analysing the temporal trend and the spatial dependency for VL case-fatality.MethodologyThe analysis was based on individual and aggregated data of the Reportable Disease Information System-SINAN (Brazilian Ministry of Health). The temporal and spatial distributions of the VL case-fatality between 2007 and 2017 (27 FUs as unit of analysis) were considered together with the individual characteristics and many other variables at the FU level (socioeconomic, demographic, access to health and epidemiological indicators) in a mixed effects models or multilevel modeling, assuming a binomial outcome distribution (death from VL).FindingsA linear increasing temporal tendency (4%/year) for VL case-fatality was observed between 2007 and 2017. There was no similarity between the case-fatality rates of neighboring FUs (non-significant spatial term), although these rates were heterogeneous in this spatial scale of analysis. In addition to the known individual risk factors age, female gender, disease’s severity, bacterial co-infection and disease duration, low level schooling and unavailability of emergency beds and health professionals (the last two only in univariate analysis) were identified as possibly related to VL death risk. Lower VL incidence was also associated to VL case-fatality, suggesting that unfamiliarity with the disease may delay appropriate medical management: VL patients with fatal outcome were notified and had VL treatment started 6 and 3 days later, respectively, in relation to VL cured patients. Access to garbage collection, marker of social and economic development, seems to be protective against the risk of dying from VL. Part of the observed VL case-fatality variability in Brazil could not be explained by the studied variables, suggesting that factors linked to the intra FU environment may be involved.ConclusionsThis study aimed to identify epidemiological conditions and others related to access to the health system possibly linked to VL case-fatality, pointing out new prognostic determinants subject to intervention.  相似文献   
992.
Joubert syndrome (JBTS) is a recessive ciliopathy in which a subset of affected individuals also have the skeletal dysplasia Jeune asphyxiating thoracic dystrophy (JATD). Here, we have identified biallelic truncating CSPP1 (centrosome and spindle pole associated protein 1) mutations in 19 JBTS-affected individuals, four of whom also have features of JATD. CSPP1 mutations explain ∼5% of JBTS in our cohort, and despite truncating mutations in all affected individuals, the range of phenotypic severity is broad. Morpholino knockdown of cspp1 in zebrafish caused phenotypes reported in other zebrafish models of JBTS (curved body shape, pronephric cysts, and cerebellar abnormalities) and reduced ciliary localization of Arl13b, further supporting loss of CSPP1 function as a cause of JBTS. Fibroblasts from affected individuals with CSPP1 mutations showed reduced numbers of primary cilia and/or short primary cilia, as well as reduced axonemal localization of ciliary proteins ARL13B and adenylyl cyclase III. In summary, CSPP1 mutations are a major cause of the Joubert-Jeune phenotype in humans; however, the mechanism by which these mutations lead to both JBTS and JATD remains unknown.  相似文献   
993.
It has been hypothesized that the extensively overlapping temporal and parietal bones of the squamosal sutures in Paranthropus boisei are adaptations for withstanding loads associated with feeding. Finite element analysis (FEA) was used to investigate the biomechanical effects of suture size (i.e., the area of overlap between the temporal and parietal bones) on stress, strain energy, and strain ratio in the squamosal sutures of Pan troglodytes and P. boisei (specimen OH 5) during biting. Finite element models (FEMs) of OH 5 and a P. troglodytes cranium were constructed from CT scans. These models contain sutures that approximate the actual suture sizes preserved in both crania. The FEM of Pan was then modified to create two additional FEMs with squamosal sutures that are 50% smaller and 25% larger than those in the original model. Comparisons among the models test the effect of suture size on the structural integrity of the squamosal suture as the temporal squama and parietal bone move relative to each other during simulated premolar biting. Results indicate that with increasing suture size there is a decreased risk of suture failure, and that maximum stress values in the OH 5 suture were favorable compared to values in the Pan model with the normal suture size. Strain ratios suggest that shear is an important strain regime in the squamosal suture. This study is consistent with the hypothesis that larger sutures help reduce the likelihood of suture failure under high biting loads. Am J Phys Anthropol 153:260–268, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
994.
Paleodiet research traditionally interprets differences in collagen isotopic compositions (δ13C, δ15N) as indicators of dietary distinction even though physiological processes likely play some role in creating variation. This research investigates the degree to which bone collagen δ13C and δ15N values normally vary within the skeleton and examines the influence of several diseases common to ancient populations on these isotopic compositions. The samples derive from two medieval German cemeteries and one Swiss reference collection and include examples of metabolic disease (rickets/osteomalacia), degenerative joint disease (osteoarthritis), trauma (fracture), infection (osteomyelitis), and inflammation (periostitis). A separate subset of visibly nonpathological skeletal elements from the German collections established normal intraindividual variation. For each disease type, tests compared bone lesion samples to those near and distant to the lesions sites. Results show that normal (nonpathological) skeletons exhibit limited intraskeletal variation in carbon‐ and nitrogen‐isotope ratios, suggesting that sampling of distinct elements is appropriate for paleodiet studies. In contrast, individuals with osteomyelitis, healed fractures, and osteoarthritis exhibit significant intraskeletal differences in isotope values, depending on whether one is comparing lesions to near or to distant sites. Skeletons with periostitis result in significant intraskeletal differences in nitrogen isotope values only, while those with rickets/osteomalacia do not exhibit significant intraskeletal differences. Based on these results, we suggest that paleodiet researchers avoid sampling collagen at or close to lesion sites because the isotope values may be reflecting both altered metabolic processes and differences in diet relative to others in the population. Am J Phys Anthropol 153:598–604, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
995.
A new photoactivatable trifunctional cross-linker, cBED (cadaverine-2-[6-(biotinamido)-2-(p-azidobenzamido) hexanoamido]ethyl-1,3′-dithiopropionate), was synthesized by chemical conversion of sulfo-SBED (sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azidobenzamido) hexanoamido]ethyl-1,3′-dithiopropionate) with cadaverine. This cross-linker was purified by reversed-phase high-performance liquid chromatography (RP–HPLC) and characterized using matrix-assisted laser desorption/ionization time-of-flight (MALDI–TOF) analysis. cBED is based on sulfo-SBED that has a photoactivatable azido group, a cleavable disulfide bond for label transfer methods, and a biotin moiety for highly sensitive biotin/avidin detection. By ultraviolet (UV) light, the azido group is converted to a reactive nitrene, transforming transient bindings of interacting structures to covalent bonds. In contrast to the sulfo-N-hydroxysuccinimide (sulfo-NHS) moiety of sulfo-SBED, which attaches quite unspecifically to amino groups, cBED includes a cadaverine moiety that can be attached by transglutaminase more specifically to certain glutamine residues. For instance, thymosin β4 can be labeled with cBED using tissue transglutaminase. By high-resolution HPLC/ESI–MS (electrospray ionization–mass spectrometry) and tandem MS (MS/MS) of the trypsin digest, it was established that glutamine residues at positions 23 and 36 were labeled, whereas Q39 showed no reactivity. The covalent binding of cBED to thymosin β4 did not influence its G-actin sequestering activity, and the complex could be used to identify new interaction partners. Therefore, cBED can be used to better understand the multifunctional role of thymosin β4 as well as of other proteins and peptides.  相似文献   
996.
997.
It is widely appreciated that short tandem repeat (STR) variation underlies substantial phenotypic variation in organisms. Some propose that the high mutation rates of STRs in functional genomic regions facilitate evolutionary adaptation. Despite their high mutation rate, some STRs show little to no variation in populations. One such STR occurs in the Arabidopsis thaliana gene PFT1 (MED25), where it encodes an interrupted polyglutamine tract. Although the PFT1 STR is large (∼270 bp), and thus expected to be extremely variable, it shows only minuscule variation across A. thaliana strains. We hypothesized that the PFT1 STR is under selective constraint, due to previously undescribed roles in PFT1 function. We investigated this hypothesis using plants expressing transgenic PFT1 constructs with either an endogenous STR or synthetic STRs of varying length. Transgenic plants carrying the endogenous PFT1 STR generally performed best in complementing a pft1 null mutant across adult PFT1-dependent traits. In stark contrast, transgenic plants carrying a PFT1 transgene lacking the STR phenocopied a pft1 loss-of-function mutant for flowering time phenotypes and were generally hypomorphic for other traits, establishing the functional importance of this domain. Transgenic plants carrying various synthetic constructs occupied the phenotypic space between wild-type and pft1 loss-of-function mutants. By varying PFT1 STR length, we discovered that PFT1 can act as either an activator or repressor of flowering in a photoperiod-dependent manner. We conclude that the PFT1 STR is constrained to its approximate wild-type length by its various functional requirements. Our study implies that there is strong selection on STRs not only to generate allelic diversity, but also to maintain certain lengths pursuant to optimal molecular function.  相似文献   
998.
It has long been presumed that activation of the apoptosis-initiating Death Receptor 5, as well as other structurally homologous members of the TNF-receptor superfamily, relies on ligand-stabilized trimerization of noninteracting receptor monomers. We and others have proposed an alternate model in which the TNF-receptor dimer—sitting at the vertices of a large supramolecular receptor network of ligand-bound receptor trimers—undergoes a closed-to-open transition, propagated through a scissorslike conformational change in a tightly bundled transmembrane (TM) domain dimer. Here we have combined electron paramagnetic resonance spectroscopy and potential-of-mean force calculations on the isolated TM domain of the long isoform of DR5. The experiments and calculations both independently validate that the opening transition is intrinsic to the physical character of the TM domain dimer, with a significant energy barrier separating the open and closed states.Death receptor 5 (DR5) is a member of the tumor necrosis factor receptor (TNFR) superfamily that mediates apoptosis when bound by its cognate ligand, TNF-related apoptosis-inducing ligand (1). Upregulated in cancer cells, DR5 is among the most actively pursued anticancer targets (2). TNF-related apoptosis-inducing ligand binds to preassembled DR5 trimers at their extracellular domains, causing the formation of oligomeric ligand-receptor networks that are held together by receptor dimers (3). In the long-isoform of DR5, this dimer is crosslinked via ligand-induced disulfide bond formation between two transmembrane (TM) domain α-helices at Cys-209, and is further stabilized by a GxxxG motif one helix-turn downstream (3).Our recent study of the structurally homologous TNFR1 showed that receptor activation involves a conformational change that propagates from the extracellular domain to the cytosolic domain through a separation (or opening) of the TM domains of the dimer (4). We have therefore hypothesized that the activation of DR5, and indeed all structurally homologous TNF-receptors, involves a scissorslike opening of the TM domain dimer (Fig. 1).Open in a separate windowFigure 1Activation model of the DR5-L TM dimer. The sequence and positions of the disulfide bond and TOAC spin label (top), along with our previously published model (bottom, left) are shown. We propose an activation model (bottom, right) in which the transmembrane dimer pivots at its disulfide bond to reach an active open conformation.Using electron paramagnetic resonance (EPR) spectroscopy, a technique that has been used previously to study TM helix architecture and dynamics (5,6), and potential-of-mean force (PMF) calculations (7,8), this study addresses the question of whether the isolated disulfide-linked DR5-L TM domain dimer occupies distinct open and closed states (Fig. 1), and how its dynamic behavior contributes to the free-energy landscape of the opening transition of the full-length receptor.The DR5-L TM domain was synthesized with TOAC, an amino acid with a nitroxide spin label rigidly fixed to the α-carbon (9), incorporated at position 32 (Fig. 1), with some minor modification to facilitate EPR measurements. Previous work confirmed that this peptide forms disulfide-linked dimers (e.g., via comparison to 2-ME treated sample) and a negligible population of higher-order oligomers (further supported by model fitting of the EPR data below). For peptide work, residues were renumbered such that Thr-204 corresponds to Thr-1, and so on. The cytosolic Cys-29 (which we previously showed does not participate in a disulfide bond in cells) was replaced with serine to prevent the formation of antiparallel disulfide-linked dimers, and Trp-34 was replaced with tyrosine to prevent intrinsic fluorescence in fluorescence studies (not published). Continuous-wave (CW) dipolar EPR (sensitive only to spin-spin distances <25 Å) was used to measure TOAC-TOAC distances within the TM dimers and revealed an ordered Gaussian distribution centered at 16 Å (full width half-maximum (FWHM) = 4 Å), corresponding to a closed state (Fig. 2 A). Double electron-electron resonance (DEER) (sensitive to spin-spin distances from 15 to 60 Å) also detected a short distance consistent with the dipolar EPR data, along with a longer, disordered component (32.9 Å, FWHM = 28 Å) (Fig. 2 B). Together, these measurements indicate the presence of a compact, ordered closed state and a broader, disordered open state. EPR on oriented membranes also indicated two structural states. Global fitting revealed two populations of spin-label tilt angles (orientation of the nitroxide principal axis relative to the membrane normal): a narrow conformation (24°, FWHM = 20°), and a disordered conformation (50°, FWHM = 48°) (Fig. 2 C). This bimodal orientational distribution (Fig. 2 C) is remarkably consistent with the bimodal distance distribution (Fig. 2 B).Open in a separate windowFigure 2EPR spectra (left) of 32-TOAC-DR5 in lipid, and resulting structural distributions (right). (A) CW dipolar EPR spectra (left) of dimer (1 mM diamide) and monomer (1 mM 2-mercaptoethanol). Best-fit spin-spin distance distribution was a single Gaussian centered at 16 ± 2 Å (right). (B) The DEER waveform (left) of 32-TOAC-DR5 dimer was best fit (right) to a two-Gaussian distribution. The short distance was constrained to agree with the CW data, because DEER has poor sensitivity for distances <20 Å. The long-distance distribution is centered at 32.9 Å and is much broader. (C) CW EPR spectra (left) of 32-TOAC-DR5, with the membrane-normal oriented parallel (red) and perpendicular (blue) to the field. Simultaneous (global) fitting of these spectra reveals narrow and broad components (right). (In panels B and C, the overall distribution is plotted as black, while the closed and open components are plotted as green and magenta, respectively.)We subsequently conducted a PMF calculation (10) using the DR5-L TM dimer starting configuration developed by our group previously (3), embedded in a DMPC bilayer, with the Leu-32/Leu-32 Cα distance as the reaction coordinate. Three calculations were run from independent starting configurations, each using 50 windows spaced in 0.5° increments, and run for 20 ns at each window (totaling 3 μs). Each of the calculations yielded a similar result, and the averaged free energy curve (Fig. 3 A) agrees remarkably well with our EPR measurements: a narrow distribution at the closed conformation (∼16 Å, Fig. 3 B) separated by an ∼3 kcal/mol energy barrier from a broad distribution of accessible open conformations at ∼27 Å, (Fig. 3 C). Each of the three individual PMF plots can be found in Fig. S1 in the Supporting Material.Open in a separate windowFigure 3(A) PMF calculation of the DR5 TM domain dimer along the Leu-32/Leu-32 distance reaction coordinate. The PMF calculation reveals a narrow closed state and a broader open state separated by a free energy barrier. Representative snapshots of the (B) closed state and (C) open state.In the closed state, the helices are tightly packed at the GxxxG interfacial motif and all the way down the juxtaposed helix faces at residues Ala-18, Leu-22, Ala-25, and Val-26. The tight packing is aided by kinking and twisting of the two helices around their common axis, increasing the interacting surface area. In the open conformations, the Ala-18, Leu-22, Ala-25, and Val-26 pairs are dissociated and, interestingly, the GxxxG motif at Gly-10 and Gly-14 remains tightly packed. The open state energy well is only slightly less favorable than the closed state (by ∼2 kcal/mol), and its free energy profile is relatively broad and flat. The increased crossing angle in the open state is facilitated by straightening of the helix kink and is not accommodated by a change in bilayer thickness (see Fig. S3, A and B).The observed change in helix-helix distance (11 Å between the two minima in the PMF) is extremely close to that observed previously in live-cell FRET studies of a constitutively active form of TNFR1 (∼8 Å change between states using large fluorescence probes at the cytosolic domains) (4). The change observed in the EPR data (17 Å) may be an overestimate because the measurement is made between TOAC spin labels that likely protrude from the two helices, depending on rotational orientation. These results collectively show that activation of these receptors requires a small, but clearly significant conformational opening of the TM domains. One important note is that our EPR experiments recapitulate the equilibrium distribution of the two states despite there being no driving force to traverse the barrier between them (∼3 kcal/mol in the closed-to-open transition and ∼1 kcal/mol in the open-to-closed transition, Fig. 3). We do not interpret the results to mean that the dimer necessarily traverses these barriers at 4°C. Rather, there likely exist multiple reaction paths for dimerization of the abstracted TM domains. Finally, in the context of the full-length receptor, how the ligand induces a conformational change capable of overcoming the closed-to-open barrier remains an important question.Whether the observed structural transition in the TM domain dimer of the long-isoform of DR5 is a ubiquitous conformational switch that acts over the entire TNFR superfamily remains unknown. Vilar et al. (11) first proposed a similar scissors-model for activation of p75 neurotrophin receptor, which has a cysteine at the center of its TM helix. The short isoform of DR5 lacks a TM domain cysteine, but does form noncovalent dimers in cells, with likely TM domain dimer contacts (3). Among the other closely related and structurally homologous members of the TNFR superfamily, TNFR1 contains a cysteine at the center of the TM domain, but lacks any discernible small residue motifs (e.g., GxxxG). TNFR2 lacks a TM cysteine on the extracellular side, but does have a GxxxG motif positioned similarly to that of DR5. On the other hand, Death Receptor 4, whose functional distinction from DR5 has remained somewhat elusive, lacks both a cysteine and any recognizable small-residue hydrophobic motif.In summary, we have extended recent findings that point to the TM domain of DR5 as an essential structural component in the conformational change associated with activation. Our findings that the DR5-L TM domain occupies distinct open and closed states, separated by a substantial energy barrier, points the way to further studies across the TNF-receptor superfamily.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号