首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8963篇
  免费   757篇
  国内免费   12篇
  2023年   38篇
  2022年   109篇
  2021年   212篇
  2020年   115篇
  2019年   129篇
  2018年   187篇
  2017年   161篇
  2016年   275篇
  2015年   495篇
  2014年   553篇
  2013年   576篇
  2012年   848篇
  2011年   759篇
  2010年   447篇
  2009年   408篇
  2008年   563篇
  2007年   576篇
  2006年   556篇
  2005年   424篇
  2004年   470篇
  2003年   340篇
  2002年   324篇
  2001年   88篇
  2000年   61篇
  1999年   81篇
  1998年   78篇
  1997年   68篇
  1996年   47篇
  1995年   44篇
  1994年   61篇
  1993年   47篇
  1992年   42篇
  1991年   45篇
  1990年   34篇
  1989年   32篇
  1988年   27篇
  1987年   23篇
  1986年   26篇
  1985年   20篇
  1984年   22篇
  1983年   26篇
  1982年   27篇
  1981年   15篇
  1980年   23篇
  1979年   18篇
  1978年   22篇
  1977年   23篇
  1974年   17篇
  1973年   26篇
  1971年   11篇
排序方式: 共有9732条查询结果,搜索用时 31 毫秒
941.
942.
943.
944.
Nectin-1 is known to undergo ectodomain shedding by α-secretase and subsequent proteolytic processing by γ-secretase. How secretase-mediated cleavage of nectin-1 is regulated in neuronal cells and how nectin-1 cleavage affects synaptic adhesion is poorly understood. We have investigated α-and γ-secretase-mediated processing of nectin-1 in primary cortical neurons and identified which protease acts as a α-secretase. We report here that NMDA receptor activation, but not stimulation of AMPA or metabotropic glutamate receptors, resulted in robust α- and γ-secretase cleavage of nectin-1 in mature cortical neurons. Cleavage of nectin-1 required influx of Ca2+ through the NMDA receptor, and activation of calmodulin, but was not dependent on calcium/calmodulin-dependent protein kinase II (CaMKII) activation. We found that ADAM10 is the major secretase responsible for nectin-1 ectodomain cleavage in neurons and the brain. These observations suggest that α- and γ-secretase processing of nectin-1 is a Ca2+/calmodulin-regulated event that occurs under conditions of activity-dependent synaptic plasticity and ADAM10 and γ-secretase are responsible for these cleavage events.  相似文献   
945.
Although load-induced mechanical signals play a key role in bone formation and maintenance of bone mass and structure, the cellular mechanisms involved in the translation of these signals are still not well understood. Recent identification of a novel flow-induced mechanosignaling pathway involving VEGF in osteoblasts and the known VEGF regulation of actin reorganization in various cell types has led us to hypothesize that fluid shear stress-induced Vegf up-regulation underlies the actin cytoskeleton adaptation observed in osteoblasts during mechanotransduction. Our results show that MC3T3-E1 cells secrete significant VEGF in response to 5 h of pulsatile fluid shear stress (PFSS; 5 dynes/cm2 at 1 Hz), whereas expression of VEGF receptors (VEGFR-1, VEGFR-2, or NRP1) is unaffected. These receptors, in particular VEGFR-2, participate in PFSS-induced VEGF release. Exposure to flow-conditioned medium or exogenous VEGF significantly induces stress fiber formation in osteoblasts that is comparable with PFSS-induced stress fiber formation, whereas VEGF knockdown abrogates this response to PFSS, thereby providing evidence that flow-induced VEGF release plays a role in actin polymerization. Using neutralizing antibodies against the receptors and VEGF isoforms, we found that soluble VEGFs, in particular VEGF164, play a crucial role in transient stress fiber formation during osteoblast mechanotransduction, most likely through VEGFR-2 and NRP1. Based on these data we conclude that flow-induced VEGF release from osteoblasts regulates osteoblast actin adaptation during mechanotransduction and that VEGF paracrine signaling may provide potent cross-talk among bone cells and endothelial cells that is essential for fracture healing, bone remodeling, and osteogenesis.  相似文献   
946.
Processing of the amyloid precursor protein (APP) by β- and γ-secretases generates pathogenic β-amyloid (Aβ) peptides associated with Alzheimer disease (AD), whereas cleavage of APP by α-secretases precludes Aβ formation. Little is known about the role of α-secretase cleavage in γ-secretase regulation. Here, we show that α-secretase-cleaved APP C-terminal product (αCTF) functions as an inhibitor of γ-secretase. We demonstrate that the substrate inhibitory domain (ASID) within αCTF, which is bisected by the α-secretase cleavage site, contributes to this negative regulation because deleting or masking this domain turns αCTF into a better substrate for γ-secretase. Moreover, α-secretase cleavage can potentiate the inhibitory effect of ASID. Inhibition of γ-secretase activity by αCTF is observed in both in vitro and cellular systems. This work reveals an unforeseen role for α-secretase in generating an endogenous γ-secretase inhibitor that down-regulates the production of Aβ. Deregulation of this feedback mechanism may contribute to the pathogenesis of AD.  相似文献   
947.
948.
The functional significance of ribosomal proteins is still relatively unclear. Here, we examined the role of small subunit protein S20 in translation using both in vivo and in vitro techniques. By means of lambda red recombineering, the rpsT gene, encoding S20, was removed from the chromosome of Salmonella enterica var. Typhimurium LT2 to produce a ΔS20 strain that grew markedly slower than the wild type while maintaining a wild-type rate of peptide elongation. Removal of S20 conferred a significant reduction in growth rate that was eliminated upon expression of the rpsT gene on a high-copy-number plasmid. The in vitro phenotype of mutant ribosomes was investigated using a translation system composed of highly active, purified components from Escherichia coli. Deletion of S20 conferred two types of initiation defects to the 30S subunit: (i) a significant reduction in the rate of mRNA binding and (ii) a drastic decrease in the yield of 70S complexes caused by an impairment in association with the 50S subunit. Both of these impairments were partially relieved by an extended incubation time with mRNA, fMet-tRNAfMet, and initiation factors, indicating that absence of S20 disturbs the structural integrity of 30S subunits. Considering the topographical location of S20 in complete 30S subunits, the molecular mechanism by which it affects mRNA binding and subunit docking is not entirely obvious. We speculate that its interaction with helix 44 of the 16S ribosomal RNA is crucial for optimal ribosome function.  相似文献   
949.
950.
The synthesis of bidentate aminophosphine ligands (PNquin) based on 8-hydroxyquinoline is described. These ligands react with cis-Fe(CO)4Br2 to give selectively octahedral complexes of the type cis,cis-Fe(PNquin)(CO)2Br2. There is only one isomer formed where the two CO and the two bromide ligands adopt a cis configuration. The reaction of [RuCp(CH3CN)3]PF6 with PNquin ligands affords the halfsandwich complexes [RuCp(PNquin)(CH3CN)]PF6 in high isolated yields. Likewise, treatment of [Ru(η6-p-cymene)(μ-Cl)Cl]2 with PNquin in the presence of AgCF3SO3 affords halfsandwich complexes of the type [Ru(η6-p-cymene)(PNquin)Cl]CF3SO3. All ligands and complexes are characterized by NMR and IR spectroscopy. The X-ray structure of representative compounds is reported. In addition, the relative stability of isomeric structures and conformers of Fe(PNquin-Ph)(CO)2Br2 is studied by means of DFT calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号