首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6256篇
  免费   530篇
  国内免费   6篇
  6792篇
  2023年   39篇
  2022年   95篇
  2021年   174篇
  2020年   90篇
  2019年   96篇
  2018年   138篇
  2017年   128篇
  2016年   220篇
  2015年   400篇
  2014年   439篇
  2013年   428篇
  2012年   622篇
  2011年   566篇
  2010年   335篇
  2009年   290篇
  2008年   400篇
  2007年   399篇
  2006年   385篇
  2005年   292篇
  2004年   313篇
  2003年   213篇
  2002年   217篇
  2001年   42篇
  2000年   27篇
  1999年   46篇
  1998年   42篇
  1997年   45篇
  1996年   29篇
  1995年   22篇
  1994年   35篇
  1993年   21篇
  1992年   22篇
  1991年   19篇
  1990年   13篇
  1989年   14篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   10篇
  1983年   13篇
  1982年   8篇
  1981年   6篇
  1980年   11篇
  1978年   6篇
  1977年   13篇
  1974年   4篇
  1973年   5篇
  1970年   4篇
  1960年   3篇
排序方式: 共有6792条查询结果,搜索用时 0 毫秒
31.
32.
The microaerophilic bacterium Campylobacter jejuni is the most common cause of bacterial food-borne infections in the developed world. Tolerance to environmental stress relies on proteases and chaperones in the cell envelope, such as HtrA and SurA. HtrA displays both chaperone and protease activities, but little is known about how each of these activities contributes to stress tolerance in bacteria. In vitro experiments showed temperature-dependent protease and chaperone activities of C. jejuni HtrA. A C. jejuni mutant lacking only the protease activity of HtrA was used to show that the HtrA chaperone activity is sufficient for growth at high temperature or under oxidative stress, whereas the HtrA protease activity is essential only under conditions close to the growth limit for C. jejuni. However, the protease activity was required to prevent induction of the cytoplasmic heat shock response even under optimal growth conditions. Interestingly, the requirement of HtrA at high temperatures was found to depend on the oxygen level, and our data suggest that HtrA may protect oxidatively damaged proteins. Finally, protease activity stimulates HtrA production and oligomer formation, suggesting that a regulatory role depends on the protease activity of HtrA. Studying a microaerophilic organism encoding only two known periplasmic chaperones (HtrA and SurA) revealed an efficient HtrA chaperone activity and proposed multiple roles of the protease activity, increasing our understanding of HtrA in bacterial physiology.  相似文献   
33.
Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack.  相似文献   
34.
Almost 40 years ago, Terry L. Erwin published a seemingly audacious proposition: There may be as many as 30 million species of insects in the world. Here, we translate Erwin's verbal argument into a diversity-ratio model—the Erwin Equation of Biodiversity—and discuss how it has inspired other biodiversity estimates. We categorize, describe the assumptions for, and summarize the most commonly used methods for calculating estimates of global biodiversity. Subsequent diversity-ratio extrapolations have incorporated parameters representing empirical insect specialization ratios, and how insect specialization changes at different spatial scales. Other approaches include macroecological diversity models and diversity curves. For many insect groups with poorly known taxonomies, diversity estimates are based on the opinions of taxonomic experts. We illustrate our current understanding of insect diversity by focusing on the six most speciose insect orders worldwide. For each order, we compiled estimates of the (a) maximum estimated number of species, (b) minimum estimated number of species, and (c) number of currently described species. By integrating these approaches and considering new information, we believe an estimate of 5.5 million species of insects in the world is much too low. New molecular methodologies (e.g., metabarcoding and NGS studies) are revealing daunting numbers of cryptic and previously undescribed species, at the same time increasing our precision but also uncertainty about present estimates. Not until technologies advance and sampling become more comprehensive, especially of tropical biotas, will we be able to make robust estimates of the total number of insect species on Earth.  相似文献   
35.
36.
37.
The signaling processes that maintain the homeostatic proliferation of peripheral T-cells and result in their self-renewal largely remain to be elucidated. Much focus has been placed on the anti-apoptotic function of the cytokine, interleukin-7 (IL-7), during T-cell development. But a more critical role has been ascribed to IL-7 as a mediator of peripheral T-cell maintenance. The biological effects responsive to IL-7 signaling are transduced through only a few well-known pathways. In this review we will focus on the signals transduced by IL-7 and similar cytokines, examining how proliferative signals originate from cytokine receptors, are amplified and eventually alter gene expression. In this regard we will highlight the crosstalk between pathways that promote survival, drive cell cycle progression and most importantly provide the needed energy to sustain these critical cellular activities. Though this review showcases much of what has been learned about IL-7 proliferative signaling, it also reveals the significant gaps in our knowledge about cytokine signaling in the very relevant context of peripheral T-cell homeostasis.  相似文献   
38.
Summary Using electroporation with the phage PRD1 genome, we set up a high-frequency DNA transfer system for a linear dsDNA molecule with 5-covalently linked terminal proteins. The transfer was saturated when more than 100 ng of PRD1 genome was used. Electroporation efficiency was about four orders of magnitude higher than that obtained with transfection. Removal of the terminal protein abolished plaque formation, which could not be rescued by supplying the terminal protein or phage DNA polymerase or both in trans.  相似文献   
39.
Foraging niche variation within a species can contribute to the maintenance of phenotypic diversity. The multiniche model posits that phenotypes occupying different niches can contribute to the maintenance of balanced polymorphisms. Using coastal populations of black bears (Ursus americanus kermodei) from British Columbia, Canada, we examined potential foraging niche divergence between phenotypes (black and white “Spirit” coat color) and between genotypes (black‐coated homozygote and heterozygous). We applied the Bayesian multivariate models, with biotracers of diet (δ13C and δ15N) together comprising the response variable, to draw inference about foraging niche variation. Variance–covariance matrices from multivariate linear mixed‐effect models were visualized as the Bayesian standard ellipses in δ13C and δ15N isotopic space to assess potential seasonal and annual niche variation between phenotypes and genotypes. We did not detect a difference in annual isotopic foraging niche area in comparisons between genotypes or phenotypes. Consistent with previous field experimental and isotopic analyses, however, we found that white phenotype Spirit bears were modestly more enriched in δ15N during the fall foraging season, though with our modest sample sizes these results were not significant. Although also not statistically significant, variation in isotopic niches between genotypes revealed that heterozygotes were moderately more enriched in δ13C along hair segments grown during fall foraging compared with black‐coated homozygotes. To the extent to which the pattern of elevated δ15N and δ13C may signal the consumption of salmon (Oncorhynchus spp.), as well as the influence of salmon consumption on reproductive fitness, these results suggest that black‐coated heterozygotes could have a minor selective advantage in the fall compared with black‐coated homozygotes. More broadly, our multivariate approach, coupled with knowledge of genetic variation underlying a polymorphic trait, provides new insight into the potential role of a multiniche mechanism in maintaining this rare morph of conservation priority in Canada''s Great Bear Rainforest and could offer new understanding into polymorphisms in other systems.  相似文献   
40.
ClpS2 is a small protein under development as a probe for selectively recognizing N-terminal amino acids of N-degron peptide fragments. To understand the structural basis of ClpS2 specificity for an N-terminal amino acid, all atom molecular dynamics (MD) simulations were conducted using the sequence of a bench-stable mutant of ClpS2, called PROSS. We predicted that a single amino acid leucine to asparagine substitution would switch the specificity of PROSS ClpS2 to an N-terminal tyrosine over the preferred phenylalanine. Experimental validation of the mutant using a fluorescent yeast-display assay showed an increase in tyrosine binding over phenylalanine, in support of the proposed hypothesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号