首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6870篇
  免费   587篇
  国内免费   5篇
  2023年   41篇
  2022年   101篇
  2021年   186篇
  2020年   93篇
  2019年   100篇
  2018年   149篇
  2017年   140篇
  2016年   234篇
  2015年   421篇
  2014年   461篇
  2013年   457篇
  2012年   647篇
  2011年   613篇
  2010年   365篇
  2009年   313篇
  2008年   420篇
  2007年   422篇
  2006年   404篇
  2005年   329篇
  2004年   328篇
  2003年   227篇
  2002年   226篇
  2001年   61篇
  2000年   50篇
  1999年   64篇
  1998年   49篇
  1997年   53篇
  1996年   32篇
  1995年   28篇
  1994年   41篇
  1993年   22篇
  1992年   37篇
  1991年   38篇
  1990年   21篇
  1989年   23篇
  1988年   12篇
  1987年   13篇
  1986年   13篇
  1985年   14篇
  1984年   18篇
  1983年   21篇
  1982年   14篇
  1981年   9篇
  1980年   12篇
  1978年   10篇
  1977年   16篇
  1973年   7篇
  1972年   7篇
  1970年   7篇
  1921年   8篇
排序方式: 共有7462条查询结果,搜索用时 15 毫秒
101.
Polyamines, including spermine, spermidine, and the precursor diamine, putrescine, are naturally occurring polycationic alkylamines that are required for eukaryotic cell growth, differentiation, and survival. This absolute requirement for polyamines and the need to maintain intracellular levels within specific ranges require a highly regulated metabolic pathway primed for rapid changes in response to cellular growth signals, environmental changes, and stress. Although the polyamine metabolic pathway is strictly regulated in normal cells, dysregulation of polyamine metabolism is a frequent event in cancer. Recent studies suggest that the polyamine catabolic pathway may be involved in the etiology of some epithelial cancers. The catabolism of spermine to spermidine utilizes either the one-step enzymatic reaction of spermine oxidase (SMO) or the two-step process of spermidine/spermine N 1-acetyltransferase (SSAT) coupled with the peroxisomal enzyme N 1-acetylpolyamine oxidase. Both catabolic pathways produce hydrogen peroxide and a reactive aldehyde that are capable of damaging DNA and other critical cellular components. The catabolic pathway also depletes the intracellular concentrations of spermidine and spermine, which are free radical scavengers. Consequently, the polyamine catabolic pathway in general and specifically SMO and SSAT provide exciting new targets for chemoprevention and/or chemotherapy.  相似文献   
102.
Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100β, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100β was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration.  相似文献   
103.
Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error‐propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y?1. In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y?1 and climate velocity 1.3 m y?1. In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1–1.1 m y?1, indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south‐central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance.  相似文献   
104.
105.
106.
Edible berry extracts rich in anthocyanins possess a broad spectrum of therapeutic, pharmacologic and anti-carcinogenic properties. Six berry extracts (wild blueberry, bilberry, cranberry, elderberry, raspberry seeds and strawberry), singly and in combination, were studied in our laboratories for antioxidant efficacy, cytotoxic potential, cellular uptake and anti-angiogenic properties. Combinations of edible berry extracts were evaluated to develop a synergistic formula, OptiBerry, which exhibited high oxygen radical absorbance capacity (ORAC) value, low cytotoxicity and superior anti-angiogenic properties compared to the other combinations tested. The current study sought to determine the broad spectrum safety and antioxidant potential of OptiBerry in vivo. Acute oral LD50 of OptiBerry was greater than 5 g/kg in rats. Acute dermal LD50 of OptiBerry was greater than 2 g/kg. No changes in the body weight or adverse effects were observed following necropsy. Primary skin and eye irritation studies were conducted in New Zealand albino rabbits. OptiBerry was classified as slightly irritating to the skin (primary skin irritation index 0.3) and minimally irritating to the eye (maximum mean total score 6.0). The antioxidant potential of OptiBerry was investigated in rats and mice by assessing GSH redox status in tissues as well as by a unique state-of-the-art electron paramagnetic resonance (EPR) imaging of whole-body redox status. A clinically relevant hyperbaric oxygen (HBO) exposure system (2 atm, 2 h) was employed to study the antioxidant properties of OptiBerry. OptiBerry feeding (8 weeks) significantly prevented HBO-induced GSH oxidation in the lung and liver of vitamin E-deficient Sprague Dawley rats. Furthermore, OptiBerry-fed mice, when exposed to HBO, demonstrated significant protection in whole-body HBO-induced oxidation compared to the unfed controls by EPR imaging. Taken together, these results indicate that OptiBerry is reasonably safe and possess antioxidant properties.  相似文献   
107.
Stuelten CH  Kamaraju AK  Wakefield LM  Roberts AB 《BioTechniques》2007,43(3):289-90, 292, 294
Canonical TGF-beta is involved in cell differentiation, tissue maintenance, and wound healing, but also plays a central role in the pathogenesis of diseases such as cancer Here we describe a lentivirus-based reporter vector system expressing green fluorescent protein (GFP) or red fluorescent protein (RFP) under the control of a Smad3-responsive element (CAGA)12 that allows observation of the temporospatial pattern of endogeneous Smad3-mediated signaling on a cellular level. Use of this method will be valuable to identify cells with active Smad3 signaling and investigate the role of endogenous Smad3 signaling in complex systems such as co-cultures in vitro, or in tumors during tumor cell invasion and metastasis in vivo.  相似文献   
108.
Lipps G  Röther S  Hart C  Krauss G 《The EMBO journal》2003,22(10):2516-2525
Although DNA replication is a process common in all domains of life, primase and replicative DNA polymerase appear to have evolved independently in the bacterial domain versus the archaeal/eukaryal branch of life. Here, we report on a new type of replication protein that constitutes the first member of the DNA polymerase family E. The protein ORF904, encoded by the plasmid pRN1 from the thermoacidophile archaeon Sulfolobus islandicus, is a highly compact multifunctional enzyme with ATPase, primase and DNA polymerase activity. Recombinant purified ORF904 hydrolyses ATP in a DNA-dependent manner. Deoxynucleotides are preferentially used for the synthesis of primers approximately 8 nucleotides long. The DNA polymerase activity of ORF904 synthesizes replication products of up to several thousand nucleotides in length. The primase and DNA polymerase activity are located in the N-terminal half of the protein, which does not show homology to any known DNA polymerase or primase. ORF904 constitutes a new type of replication enzyme, which could have evolved independently from the eubacterial and archaeal/eukaryal proteins of DNA replication.  相似文献   
109.
110.
Organ failure induced by endotoxic shock has recently been associated with affected mitochondrial function. In this study, effects of in vivo lipopolysaccharide-challenge on protein patterns of rat liver mitochondria in treated animals versus controls were studied by two-dimensional electrophoresis (differential image gel electrophoresis). Significant upregulation was found for ATP-synthase alpha chain and superoxide dismutase [Mn]. Our data suggest that endotoxic shock mediated changes in the mitochondrial proteome contribute to a compensatory reaction (adaptation to endotoxic shock) rather than to a mechanism of cell damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号