首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1593篇
  免费   162篇
  国内免费   2篇
  1757篇
  2023年   6篇
  2022年   11篇
  2021年   21篇
  2020年   15篇
  2019年   19篇
  2018年   24篇
  2017年   19篇
  2016年   44篇
  2015年   65篇
  2014年   86篇
  2013年   106篇
  2012年   102篇
  2011年   91篇
  2010年   70篇
  2009年   58篇
  2008年   75篇
  2007年   78篇
  2006年   59篇
  2005年   61篇
  2004年   61篇
  2003年   57篇
  2002年   59篇
  2001年   50篇
  2000年   54篇
  1999年   39篇
  1998年   27篇
  1997年   14篇
  1996年   13篇
  1995年   21篇
  1994年   6篇
  1993年   12篇
  1992年   28篇
  1991年   36篇
  1990年   36篇
  1989年   25篇
  1988年   27篇
  1987年   22篇
  1986年   13篇
  1985年   20篇
  1984年   18篇
  1983年   13篇
  1982年   10篇
  1981年   11篇
  1979年   14篇
  1978年   10篇
  1977年   9篇
  1973年   5篇
  1972年   6篇
  1971年   5篇
  1970年   5篇
排序方式: 共有1757条查询结果,搜索用时 10 毫秒
21.
Clinical mass spectrometry in neuroscience. Proteomics and peptidomics.   总被引:2,自引:0,他引:2  
In this review we discuss the merits and drawbacks with the use of proteomic and peptidomic strategies for identification of proteins and peptides in their multidimensional interactions in complex biological processes. The progress in proteomics and peptidomics during the last years offer us new challenges to study changes in the protein and peptide synthesis. These strategies also offer new tools to follow post-translational modifications and other disturbed chemical processes that may be indicative of pathophysiological alteration(s). Furthermore these techniques can contribute to improvements in the diagnosis and therapy of neurodegenerative diseases, such as Alzheimer's disease, and psychiatric diseases, as depression and post traumatic stress disorders. We also consider different practical aspects of the applications of mass spectrometry in clinical neuroscience, illustrated by example from our laboratories. The new proteomic and peptidomic strategies will further enable the progress for clinical neuroscience research.  相似文献   
22.
Novel monoclonal antibodies that specifically recognize gamma-carboxyglutamyl (Gla) residues in proteins and peptides have been produced. As demonstrated by Western blot and time-resolved immunofluorescence assays the antibodies are pan-specific for most or all of the Gla-containing proteins tested (factors VII, IX, and X, prothrombin, protein C, protein S, growth arrest-specific protein 6, bone Gla protein, conantokin G from a cone snail, and factor Xa-like proteins from snake venom). Only the Gla-containing light chain of the two-chain proteins was bound. Decarboxylation destroyed the epitope(s) on prothrombin fragment 1, and Ca(2+) strongly inhibited binding to prothrombin. In Western blot, immunofluorescence, and surface plasmon resonance assays the antibodies bound peptides conjugated to bovine serum albumin that contained either a single Gla or a tandem pair of Gla residues. Binding was maintained when the sequence surrounding the Gla residue(s) was altered. Replacement of Gla with glutamic acid resulted in a complete loss of the epitope. The utility of the antibodies was demonstrated in immunochemical methods for detecting Gla-containing proteins and in the immunopurification of a factor Xa-like protein from tiger snake venom. The amino acid sequences of the Gla domain and portions of the heavy chain of the snake protein were determined.  相似文献   
23.

Background and Aims

The main assemblage of the grass subfamily Chloridoideae is the largest known clade of C4 plant species, with the notable exception of Eragrostis walteri Pilg., whose leaf anatomy has been described as typical of C3 plants. Eragrostis walteri is therefore classically hypothesized to represent an exceptional example of evolutionary reversion from C4 to C3 photosynthesis. Here this hypothesis is tested by verifying the photosynthetic type of E. walteri and its classification.

Methods

Carbon isotope analyses were used to determine the photosynthetic pathway of several E. walteri accessions, and phylogenetic analyses of plastid rbcL and ndhF and nuclear internal transcribed spacer DNA sequences were used to establish the phylogenetic position of the species.

Results

Carbon isotope analyses confirmed that E. walteri is a C3 plant. However, phylogenetic analyses demonstrate that this species has been misclassified, showing that E. walteri is positioned outside Chloridoideae in Arundinoideae, a subfamily comprised entirely of C3 species.

Conclusions

The long-standing hypothesis of C4 to C3 reversion in E. walteri is rejected, and the classification of this species needs to be re-evaluated.  相似文献   
24.
In our studies of ovarian cancer cells we have identified subpopulations of cells that are in a transitory E/M hybrid stage, i.e. cells that simultaneously express epithelial and mesenchymal markers. E/M cells are not homogenous but, in vitro and in vivo, contain subsets that can be distinguished based on a number of phenotypic features, including the subcellular localization of E-cadherin, and the expression levels of Tie2, CD133, and CD44. A cellular subset (E/M-MP) (membrane E-cadherin(low)/cytoplasmic E-cadherin(high)/CD133(high), CD44(high), Tie2(low)) is highly enriched for tumor-forming cells and displays features which are generally associated with cancer stem cells. Our data suggest that E/M-MP cells are able to differentiate into different lineages under certain conditions, and have the capacity for self-renewal, i.e. to maintain a subset of undifferentiated E/M-MP cells during differentiation. Trans-differentiation of E/M-MP cells into mesenchymal or epithelial cells is associated with a loss of stem cell markers and tumorigenicity. In vivo xenograft tumor growth is driven by E/M-MP cells, which give rise to epithelial ovarian cancer cells. In contrast, in vitro, we found that E/M-MP cells differentiate into mesenchymal cells, in a process that involves pathways associated with an epithelial-to-mesenchymal transition. We also detected phenotypic plasticity that was dependent on external factors such as stress created by starvation or contact with either epithelial or mesenchymal cells in co-cultures. Our study provides a better understanding of the phenotypic complexity of ovarian cancer and has implications for ovarian cancer therapy.  相似文献   
25.
Osteoclast formation is controlled by stromal cells/osteoblasts expressing macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), crucial for osteoclast progenitor cell proliferation, survival and differentiation, and osteoprotegerin (OPG) that inhibits the interaction between RANKL and its receptor RANK. Recent data have strongly indicated that the nervous system plays an important role in bone biology. In the present study, the effects of the neuropeptide vasoactive intestinal peptide (VIP), present in peptidergic skeletal nerve fibers, on the expression of RANKL, OPG, and M-CSF in osteoblasts and stromal cells have been investigated. VIP and pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38), but not secretin, stimulated rankl mRNA expression in mouse calvarial osteoblasts. In contrast, VIP inhibited the mRNA expressions of opg and m-csf, effects shared by PACAP-38, but not by secretin. VIP did not affect rankl, opg, or m-csf mRNA expression in mouse bone marrow stromal cells (BMSCs). The effects by VIP on the mRNA expression of rankl, opg, and m-csf were all potentiated by the cyclic AMP phosphodiesterase inhibitor rolipram. In addition, VIP robustly enhanced the phosphorylation of ERK and the stimulatory effect by VIP on rankl mRNA was inhibited by the MEK1/2 inhibitor PD98059. These observations demonstrate that activation of VPAC(2) receptors in osteoblasts enhances the RANKL/OPG ratio by mechanisms mediated by cyclic AMP and ERK pathways suggesting an important role for VIP in bone remodeling.  相似文献   
26.
The beneficial effect of antibody therapy in human disease has become well established mainly for the treatment of cancer and immunological disorders. The inherent monospecificity of mAbs present limitations to mAb therapy which have become apparent notably in addressing complex entities like infectious agents or heterogenic endogenous targets. For such indications mixtures of antibodies comprising a combination of specificities would convey more potent biological effect which could translate into therapeutic efficacy. Recombinant polyclonal antibodies (rpAb) consisting of a defined number of well-characterized mAbs constitute a new class of target specific antibody therapy. We have developed a cost-efficient cell banking and single-batch manufacturing concept for the production of such products and demonstrate that a complex pAb composition, rozrolimupab, comprising 25 individual antibodies can be manufactured in a highly consistent manner in a scaled-up manufacturing process. We present a strategy for the release and characterization of antibody mixtures which constitute a complete series of chemistry, manufacturing, and control (CMC) analytical methods to address identity, purity, quantity, potency, and general characteristics. Finally we document selected quality attributes of rozrolimupab based on a battery of assays at the genetic-, protein-, and functional level and demonstrate that the manufactured rozrolimupab batches are highly pure and very uniform in their composition.  相似文献   
27.
In 1991, soil samples were taken from the long-term (40 years old) field trial at Ultuna in order to investigate soil P status and the distribution of its various forms. Among the treatments investigated, two were inorganic PK additions only – one to continuous fallow (PK-fallow) and the other to cropped fields (PK). There were also treatments amended with PK in combination with applications of straw, green manure composed of grass (GM), farmyard manure (FYM) or sewage sludge (SS). A total of 720, 720, 883, 1154, 1941 and 6617 kg P h-1 had been supplied in the PK-fallow, PK, Straw, GM, FYM and SS treatments, respectively up to 1991. The soil P distribution was determined by step-wise fractionation using anion exchange resin (resin-P), sodium bicarbonate (bicarb-P), sodium hydroxide (hyd-P), and HCl (HCl-P). Finally, the soil was digested to obtain residual P (resid-P). The amendments resulted in a significant (p=0.05) enrichment of total P in soils relative to the initial value. A breakdown of the bicarb-P and hyd-P into inorganic P (Pi) and organic P (Po) was manifested as considerable transformations within these P compartments compared with the initial values. Thus, total Pi (resin-P, bicarb-Pi, hyd-Pi, HC1-P, resid-P)/total Po (bicarb-Po, hyd-Po) ratios markedly decreased in all treatments relative to control. The two P compartments were significantly and negatively (p =0.05) correlated. On average, the total Po increase was about 380 mg kg-1 (range 270–715). The results suggested that an equilibrium between Pi immobilization and Po mineralization was difficult to attain under any of the experimental management regimes used, which exclude inorganic N application. The balance sheet calculations revealed P deficits ranging from about 10 to 60 kg ha-1, indicating that some P had migrated to the subsoil.  相似文献   
28.
Flavin‐dependent halogenases require reduced flavin adenine dinucleotide (FADH2), O2, and halide salts to halogenate their substrates. We describe the crystal structures of the tryptophan 6‐halogenase Thal in complex with FAD or with both tryptophan and FAD. If tryptophan and FAD were soaked simultaneously, both ligands showed impaired binding and in some cases only the adenosine monophosphate or the adenosine moiety of FAD was resolved, suggesting that tryptophan binding increases the mobility mainly of the flavin mononucleotide moiety. This confirms a negative cooperativity between the binding of substrate and cofactor that was previously described for other tryptophan halogenases. Binding of substrate to tryptophan halogenases reduces the affinity for the oxidized cofactor FAD presumably to facilitate the regeneration of FADH2 by flavin reductases.  相似文献   
29.
Protein disulfide isomerases (PDIs) are known to play important roles in the folding of nascent proteins and in the formation of disulfide bonds. Recently, we identified a PDI from Chlamydomonas reinhardtii (CrPDI2) by a mass spectrometry approach that is specifically enriched by heparin affinity chromatography in samples taken during the night phase. Here, we show that the recombinant CrPDI2 is a redox-active protein. It is reduced by thioredoxin reductase and catalyzes itself the reduction of insulin chains and the oxidative refolding of scrambled RNase A. By immunoblots, we confirm a high-amplitude change in abundance of the heparin-bound CrPDI2 during subjective night. Interestingly, we find that CrPDI2 is present in protein complexes of different sizes at both day and night. Among three identified interac- tion partners, one (a 2-cys peroxiredoxin) is present only during the night phase. To study a potential function of CrPDI2 within the circadian system, we have overexpressed its gene. Two transgenic lines were used to measure the rhythm of phototaxis~ In the transgenic strains, a change in the acrophase was observed. This indicates that CrPDI2 is involved in the circadian signaling pathway and, together with the night phase-specific interaction of CrPDI2 and a peroxiredoxin, these findings suggest a close coupling of redox processes and the circadian clock in C. reinhardtii.  相似文献   
30.
Fine-root production,mortality and decomposition in forest ecosystems   总被引:1,自引:0,他引:1  
Hans Persson 《Plant Ecology》1980,41(2):101-109
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号