首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   46篇
  483篇
  2023年   4篇
  2022年   3篇
  2021年   11篇
  2020年   10篇
  2019年   11篇
  2018年   11篇
  2017年   10篇
  2016年   27篇
  2015年   24篇
  2014年   37篇
  2013年   46篇
  2012年   39篇
  2011年   40篇
  2010年   25篇
  2009年   25篇
  2008年   23篇
  2007年   19篇
  2006年   11篇
  2005年   15篇
  2004年   14篇
  2003年   11篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   2篇
  1992年   3篇
  1990年   3篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1979年   3篇
  1972年   3篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1963年   1篇
  1926年   1篇
排序方式: 共有483条查询结果,搜索用时 15 毫秒
101.
The MCM2-7 complex is believed to function as the eukaryotic replicative DNA helicase. It is recruited to chromatin by the origin recognition complex (ORC), Cdc6, and Cdt1, and it is activated at the G(1)/S transition by Cdc45 and the protein kinases Cdc7 and Cdk2. Paradoxically, the number of chromatin-bound MCM complexes greatly exceeds the number of bound ORC complexes. To understand how the high MCM2-7:ORC ratio comes about, we examined the binding of these proteins to immobilized linear DNA fragments in Xenopus egg extracts. The minimum length of DNA required to recruit ORC and MCM2-7 was approximately 80 bp, and the MCM2-7:ORC ratio on this fragment was approximately 1:1. With longer DNA fragments, the MCM2-7:ORC ratio increased dramatically, indicating that MCM complexes normally become distributed over a large region of DNA surrounding ORC. Only a small subset of the chromatin-bound MCM2-7 complexes recruited Cdc45 at the onset of DNA replication, and unlike Cdc45, MCM2-7 was not limiting for DNA replication. However, all the chromatin-bound MCM complexes may be functional, because they were phosphorylated in a Cdc7-dependent fashion, and because they could be induced to support Cdk2-dependent Cdc45 loading. The data suggest that in Xenopus egg extracts, origins of replication contain multiple, distributed, initiation-competent MCM2-7 complexes.  相似文献   
102.
103.
104.
Persistent neurogenesis in the central olfactory pathway characterizes many reptant decapods such as lobsters, crayfish and crabs. In these animals, the deutocerebral proliferative system generates new neurons which integrate into the neuronal network of the first order processing neuropil of the olfactory system, the deutocerebral chemosensory lobes (also called olfactory lobes). However, differences concerning the phenotype and the mechanisms that drive adult neurogenesis were reported in crayfish versus spiny lobsters. While numerous studies have focussed on these mechanisms and regulation of adult neurogenesis, investigations about the phylogenetic distribution are missing. To contribute an evolutionary perspective on adult neurogenesis in decapods, we investigated two representatives of basally diverging lineages, the dendrobranchiate Penaeus vannamei and the caridean Crangon crangon using the thymidine analogue Bromodeoxyuridine (BrdU) as marker for the S phase of cycling cells. Compared to reptant decapods, our results suggest a simpler mechanism of neurogenesis in the adult brain of dendrobranchiate and caridean shrimps. Observed differences in the rate of proliferation and spatial dimensions are suggested to correlate with the complexity of the olfactory system. We assume that a more complex and mitotically more active proliferative system in reptant decapods evolved with the emergence of another processing neuropil, the accessory lobes. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   
105.
The three mitochondrial-encoded proteins, COX1, COX2, and COX3, form the core of the cytochrome c oxidase. Upon synthesis, COX2 engages with COX20 in the inner mitochondrial membrane, a scaffold protein that recruits metallochaperones for copper delivery to the CuA-Site of COX2. Here we identified the human protein, TMEM177 as a constituent of the COX20 interaction network. Loss or increase in the amount of TMEM177 affects COX20 abundance leading to reduced or increased COX20 levels respectively. TMEM177 associates with newly synthesized COX2 and SCO2 in a COX20-dependent manner. Our data shows that by unbalancing the amount of TMEM177, newly synthesized COX2 accumulates in a COX20-associated state. We conclude that TMEM177 promotes assembly of COX2 at the level of CuA-site formation.  相似文献   
106.
107.
This study aims to investigate how intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) affects the mobile fractions of trace metals (Fe, Mn, Pb, Cd, Th, U, Sc, La, Nd, Ge) in soil solution. Oat and white lupin were cultivated in monocultures and mixed cultures with differing oat/white lupin ratios (11% and 33% lupin, respectively). Temporal variation of soil solution chemistry was compared with the mobilization of elements in the rhizosphere of white lupin and concentrations in plant tissues. Relative to the monocrops, intercropping of oat with 11% white lupin significantly increased the concentrations of Fe, Pb, Th, La and Nd in soil solution as well as the concentrations of Fe, Pb, Th, Sc, La and Nd in tissues of oat. Enhanced mobility of the mentioned elements corresponded to a depletion of elements in the rhizosphere soil of white lupin. In mixed cultures with 33% lupin, concentrations in soil solution only slightly increased. We conclude that intercropping with 11% white lupin might be a promising tool for phytoremediation and phytomining research enhancing mobility of essential trace metals as well as elements with relevance for phytoremediation (Pb, Th) and phytomining (La, Nd, Sc) in soil.  相似文献   
108.
Bursicon is the main regulator of post molting and post eclosion processes during arthropod development. The active Bursicon hormone is a heterodimer of Burs-α and Burs-β. However, adult midguts express Burs-α to regulate the intestinal stem cell niche. Here, we examined the potential expression and function of its heterodimeric partner, Burs-β in the adult midgut. Unexpectedly, our evidence suggests that Burs-β is not significantly expressed in the adult midgut. burs-β mutants displayed the characteristic developmental defects but showed wild type-like adult midguts, thus uncoupling the developmental and adult phenotypes seen in burs-α mutants. Gain of function data and ex vivo experiments using a cAMP biosensor, demonstrated that Burs-α is sufficient to drive stem cell quiescence and to activate dLGR2 in the adult midgut.

Our evidence suggests that the post developmental transactivation of dLGR2 in the adult midgut is mediated by Burs-α and that the β subunit of Bursicon is dispensable for these activities.  相似文献   

109.
110.
The temporal contingency of feedback is an essential requirement of successful human-computer interactions. The timing of feedback not only affects the behavior of a user but is also accompanied by changes in psychophysiology and neural activity. In three fMRI experiments we systematically studied the impact of delayed feedback on brain activity while subjects performed an auditory categorization task. In the first fMRI experiment, we analyzed the effects of rare and thus unexpected delays of different delay duration on brain activity. In the second experiment, we investigated if users can adapt to frequent delays. Therefore, delays were presented as often as immediate feedback. In a third experiment, the influence of interaction outage was analyzed by measuring the effect of infrequent omissions of feedback on brain activity. The results show that unexpected delays in feedback presentation compared to immediate feedback stronger activate inter alia bilateral the anterior insular cortex, the posterior medial frontal cortex, the left inferior parietal lobule and the right inferior frontal junction. The strength of this activation increases with the duration of the delay. Thus, delays interrupt the course of an interaction and trigger an orienting response that in turn activates brain regions of action control. If delays occur frequently, users can adapt, delays become expectable, and the brain activity in the observed network diminishes over the course of the interaction. However, introducing rare omissions of expected feedback reduces the system’s trustworthiness which leads to an increase in brain activity not only in response to such omissions but also following frequently occurring and thus expected delays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号