Extracellular peroxygenase from the agaric fungus Agrocybe aegerita is a versatile biocatalyst that oxygenates various substrates by means of hydrogen peroxide. The enzyme is routinely produced in suspensions of soybean meal and has until now been purified by several steps of fast protein liquid chromatography (FPLC) using different ion exchangers. The final protein fraction had a molecular mass of 46 kDa but still consisted of several incompletely separated proteins with slightly differing isoelectric points (pI 5.2, 5.6, 6.1), probably representing differently glycosylated isoforms. This made it difficult to further purify the individual protein forms. Since homogeneous protein fractions are a pre-requisite for X-ray crystallography and specific structure-function studies, an appropriate FPLC procedure was developed starting with pre-purification of crude peroxygenase on SP Sepharose followed by chromatofocusing on a Mono P column and elution with a pH gradient. Three sufficiently separated main protein peaks were eluted from the Mono P column and confirmed to be distinct forms of aromatic peroxygenase with different pIs. All A. aegerita peroxygenase forms oxygenated toluene and naphthalene and no catalytic differences were observed between them. We tested also two devices for preparative isoelectric focusing (Rotofor, IsoPrime systems) for peroxygenase separation but resolution and protein recovery were not sufficient. 相似文献
The nef gene of the pathogenic simian immunodeficiency virus (SIV) 239 clone was replaced with primary human immunodeficiency virus type 1 (HIV-1) nef alleles to investigate whether HIV-1 Nef can substitute for SIV Nef in vivo. Initially, two rhesus macaques were infected with the chimeric viruses (Nef-SHIVs). Most of the nef alleles obtained from both animals predicted intact open reading frames. Furthermore, forms containing upstream nucleotide substitutions that enhanced expression of the inserted gene became predominant. One animal maintained high viral loads and slowly progressed to immunodeficiency. nef long terminal repeat sequences amplified from this animal were used to generate a second generation of Nef-SHIVs. Two macaques, which were subsequently infected with a mixture of cloned chimeric viruses, showed high viral loads and progressed to fatal immunodeficiency. Five macaques received a single molecular clone, named SHIV-40K6. The SHIV-40K6 nef allele was active in CD4 and class I major histocompatibility complex downregulation and enhanced viral infectivity and replication. Notably, all of the macaques inoculated with SHIV-40K6 showed high levels of viral replication early in infection. During later stages, however, the course of infection was variable. Three animals maintained high viral loads and developed immunodeficiency. Of the remaining two macaques, which showed decreasing viral loads after the acute phase of infection, only one efficiently controlled viral replication and remained asymptomatic during 1.5 years of follow-up. The other animal showed an increasing viral load and developed signs of progressive infection during later stages. Our data demonstrate that HIV-1 nef can, to a large extent, functionally replace SIVmac nef in vivo. 相似文献
The R1 allele confers on potato a race-specific resistance to Phytophthora infestans. The corresponding genetic locus maps on chromosome V in a region in which several other resistance genes are also located. As part of a strategy for cloning R1, a high-resolution genetic map was constructed for the segment of chromosome V that is bordered by the RFLP loci GP21 and GP179 and includes the R1 locus. Bulked segregant analysis and markers based on amplified fragment length polymorphisms (AFLP markers) were used to select molecular markers closely linked to R1. Twenty-nine of approximately 3200 informative AFLP loci displayed linkage to the R1 locus. Based on the genotypic analysis of 461 gametes, eight loci mapped within the GP21–GP179 interval. Two of those could not be seperated from R1 by recombination. For genotyping large numbers of plants with respect to the flanking markers GP21 and GP179 PCR based assays were also developed which allowed marker-assisted selection of plants with genotypes Rr and rr and of recombinant plants. 相似文献
Point mutations in SIVmac239 Nef disrupting CD4 downmodulation and enhancement of virion infectivity attenuate viral replication in acutely infected rhesus macaques, but changes selected later in infection fully restore Nef function (A. J. Iafrate et al., J. Virol. 74:9836-9844, 2000). To further evaluate the relevance of these Nef functions for viral persistence and disease progression, we analyzed an SIVmac239 Nef mutant containing a deletion of amino acids Q64 to N67 (delta64-67Nef). This mutation inactivates the N-distal AP-2 clathrin adaptor binding element and disrupts the abilities of Nef to downregulate CD4, CD28 and CXCR4 and to stimulate viral replication in vitro. However, it does not impair the downmodulation of CD3 and class I major histocompatibility complex (MHC-I) or MHC-II and the upregulation of the MHC-II-associated invariant chain, and it has only a moderate effect on the enhancement of virion infectivity. Replication of the delta64-67Nef variant in acutely infected macaques was intermediate between grossly nef-deleted and wild-type SIVmac239. Subsequently, three of six macaques developed moderate to high viral loads and developed disease, whereas the remaining animals efficiently controlled SIV replication and showed a more attenuated clinical course of infection. Sequence analysis revealed that the deletion in nef was not repaired in any of these animals. However, some changes that slightly enhanced the ability of Nef to downmodulate CD4 and moderately increased Nef-mediated enhancement of viral replication and infectivity in vitro were observed in macaques developing high viral loads. Our results imply that both the Nef functions that were disrupted by the delta64-67 mutation and the activities that remained intact contribute to viral pathogenicity. 相似文献
Early results suggested that the amphotropic murine leukemia virus (A-MLV) does not enter cells via endocytosis through clathrin-coated pits and this gammaretrovirus has therefore been anticipated to fuse directly with the plasma membrane. However, here we present data implicating a caveola-mediated endocytic entry route for A-MLV via its receptor Pit2. Caveolae belong to the cholesterol-rich microdomains characterized by resistance to nonionic detergents such as Triton X-100. Extraction of murine fibroblastic NIH 3T3 cells in cold Triton X-100 showed the presence of the A-MLV receptor Pit2 in detergent-insoluble microdomains. Using coimmunoprecipitation of cell extracts, we were able to demonstrate direct association of Pit2 with caveolin-1, the structural protein of caveolae. Other investigations revealed that A-MLV infection in contrast to vesicular stomatitis virus infection is a slow process (t(1/2) approximately 5 h), which is dependent on plasma membrane cholesterol but independent of NH4Cl treatment of cells; NH4Cl impairs entry via clathrin-coated pits. Furthermore, expression of dominant-negative caveolin-1 decreased the susceptibility to infection via Pit2 by approximately 70%. These results show that A-MLV can enter cells via a caveola-dependent entry route. Moreover, increase in A-MLV infection by treatment with okadaic acid as well as entry of fusion-defective fluorescent A-MLV virions in NIH 3T3 cells further confirmed our findings and show that A-MLV can enter mouse fibroblasts via an endocytic entry route involving caveolae. Finally, we also found colocalization of fusion-defective fluorescent A-MLV virions with caveolin-1 in NIH 3T3 cells. This is the first time substantial evidence has been presented implicating the existence of a caveola-dependent endocytic entry pathway for a retrovirus. 相似文献
Oxidoreductases are a group of enzymes that have been regarded uneconomical for industrial processes due to their dependence on cofactors or prosthetic groups for activity and the difficulties of regenerating these. Especially, flavoproteins have long been neglected for biocatalytical applications. The prosthetic group of some of these enzymes, but not all, can be regenerated by oxygen, resulting in hydrogen peroxide formation, which is detrimental to enzyme stability. As a contribution to alleviating this problem, a novel concept for the regeneration of electron acceptors (redox mediators) for flavoenzymes is described. Flavin-containing enzymes such as cellobiose dehydrogenase (CDH) or pyranose oxidase (P2O) are used in conjunction with laccases and a redox mediator. The flavin of the synthetic enzyme is reduced while the oxidized product of interest is formed, in turn, the flavin is reoxidized with the help of an electron acceptor, which then is regenerated using a laccase. Laccases are copper containing phenol oxidases that can transfer four electrons to oxygen, producing two molecules of water. Preliminary screening experiments with different redox mediators, and a coupled enzyme system of CDH and laccase, showed that a wide variety of different substances can efficiently shuttle electrons between these two enzymes. Among them are substituted and unsubstituted ortho- and para-quinones, benzoquinone imines, cation radicals such as 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), redox dyes such as phenothiazines or phenoxazines, as well as iron complexes.
Experiments in which CDH completely oxidizes lactose to lactobionic acid and P2O entirely converts glucose to 2-keto-glucose are presented. Catalytic amounts of redox mediators are used and continuously regenerated by a laccase. Specific productivities of up to 19.3 g·(h·kU)−1 and 72 g·(h·kU)−1 for CDH and P2O, respectively, were found. The total turnover numbers (TTNs) for the two enzymes used were in the range of 105–106. Oxygen supply for the laccase is a crucial factor in avoiding rate limitation. Undeniably, this system facilitates the efficient use of a hitherto underexploited group of enzymes for preparative purposes. 相似文献
We have recently shown that 3-deazaadenosine (c3Ado) inhibits atherogenesis in mice. We studied whether its anti-inflammatory capacity would also affect neointima-formation after balloon injury. Sprague Dawley rats underwent balloon angioplasty. C3Ado was administered orally, starting 5 days prior to the balloon injury and continued for 2 weeks. Fourteen days after balloon injury the intima/media ratio in the c3Ado-treated group was reduced by 67% (p < 0.001) and luminal stenosis by 50% (p < 0.001). Neointimal cellular density was decreased by 25% (p < 0.001) and the induction of c-Jun and ki67 was markedly lower. The reduction of the intima/media ratio was still observed 3 months after balloon injury. Furthermore, a c3Ado-dependent inhibition of PDGF-mediated ERK-activation and proliferation could be demonstrated.Short-term administration of C3Ado inhibits neointima-formation in rats for at least 3 months after injury. The present findings implicate that c3Ado may be useful as an inhibitor of restenosis-formation after balloon angioplasty in humans. 相似文献
Pulmonary ErbB4 deletion leads to a delay in fetal lung development, alveolar simplification, and lung function disturbances in adult mice. We generated a model of intrauterine infection in ErbB4 transgenic mice to study the additive effects of antenatal LPS administration and ErbB4 deletion during fetal lung development. Pregnant mice were treated intra-amniotically with an LPS dose of 4 μg at E17 of gestation. Lungs were analyzed 24 h later. A significant influx of inflammatory cells was seen in all LPS-treated lungs. In heterozygote control lungs, LPS treatment resulted in a delay of lung morphogenesis characterized by a significant increase in the fraction of mesenchyme, a decrease in gas exchange area, and disorganization of elastic fibers. Surfactant protein (Sftp)b and Sftpc were upregulated, but mRNA of Sftpb and Sftpc was downregulated compared with non-LPS-treated controls. The mRNA of Sftpa1 and Sftpd was upregulated. In ErbB4-deleted lungs, the LPS effects were more pronounced, resulting in a further delay in morphological development, a more pronounced inflammation in the parenchyma, and a significant higher increase in all Sftp. The effect on Sftpb and Sftpc mRNA was somewhat different, resulting in a significant increase. These results imply a major role of ErbB4 in LPS-induced signaling in structural and functional lung development. 相似文献