首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2673篇
  免费   246篇
  2023年   6篇
  2022年   7篇
  2021年   36篇
  2020年   23篇
  2019年   36篇
  2018年   58篇
  2017年   43篇
  2016年   86篇
  2015年   115篇
  2014年   135篇
  2013年   147篇
  2012年   198篇
  2011年   197篇
  2010年   150篇
  2009年   138篇
  2008年   176篇
  2007年   165篇
  2006年   133篇
  2005年   129篇
  2004年   133篇
  2003年   138篇
  2002年   129篇
  2001年   23篇
  2000年   18篇
  1999年   26篇
  1998年   36篇
  1997年   32篇
  1996年   27篇
  1995年   39篇
  1994年   26篇
  1993年   36篇
  1992年   34篇
  1991年   21篇
  1990年   21篇
  1989年   24篇
  1988年   20篇
  1987年   9篇
  1986年   11篇
  1985年   14篇
  1984年   9篇
  1983年   9篇
  1982年   10篇
  1981年   13篇
  1980年   11篇
  1979年   6篇
  1978年   10篇
  1977年   11篇
  1975年   6篇
  1972年   6篇
  1970年   7篇
排序方式: 共有2919条查询结果,搜索用时 31 毫秒
111.
TMEM45A gene encodes an initially uncharacterized predicted transmembrane protein. We previously showed that this gene is highly expressed in keratinocytes where its expression correlates with keratinization, suggesting a role in normal epidermal physiology. To test this hypothesis, we generated TMEM45A knockout mice and found that these mice develop without any evident phenotype. The morphology of the epidermis assessed by histology and by labelling differentiation markers in immunofluorescence was not altered. Toluidine blue permeability assay showed that the epidermal barrier develops normally during embryonic development. We also showed that depletion of TMEM45A in human keratinocytes does not alter their potential to form in vitro 3D-reconstructed epidermis. Indeed, epidermis with normal morphogenesis were generated from TMEM45A-silenced keratinocytes. Their expression of differentiation markers quantified by RT-qPCR and evidenced by immunofluorescence labelling as well as their barrier function estimated by Lucifer yellow permeability were similar to the control epidermis. In summary, TMEM45A gene expression is dispensable for epidermal morphogenesis, keratinization and barrier formation. If this protein plays a role in the epidermis, its experimental depletion can possibly be compensated by other proteins in the two experimental models analyzed in this study.  相似文献   
112.
113.
114.
115.
116.
Borna disease virus (BDV) is a non‐segmented negative‐stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell–cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell–cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin‐mediated processing of GP and demonstrate that cleaved and fusion‐active GP is strictly necessary for the cell‐to‐cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus‐glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.  相似文献   
117.
Sticky trap predation, the use of adhesive substances to trap and capture prey, is an intriguing yet poorly studied predatory strategy. Unique among known sticky trap predators, assassin bugs (Reduviidae) have evolved both exogenous and endogenous sticky trap predatory mechanisms: some trap their prey with sticky plant resins, some scavenge insects entrapped by sticky plant trichomes and others self‐produce sticky secretions. The evolution of these different strategies in assassin bugs is poorly understood due to the lack of comprehensive phylogenies. We reconstruct a phylogeny of Reduviidae (141 taxa; > 5000 bp) focusing on the Harpactorinae and Bactrodinae that engage in sticky trap predation. Ancestral state reconstruction, and temporal and geographical divergence analyses show that sticky trap predation techniques in assassin bugs evolved at least seven times independently since the late Cretaceous: use of sticky plant trichomes evolved as many as four times, resin‐use twice independently and once as a transition from trichome use, and ‘self‐stickiness’ once. Exogenous and endogenous sticky traps first appeared in the Neotropics, with the two exogenous mechanisms (resin and trichome use) subsequently evolving independently in the Old World. This study illustrates, for the first time, the complex evolutionary pattern of sticky trap predation within assassin bugs.  相似文献   
118.
Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi‐scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence‐based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence‐based prediction models were fitted using this and other peptide binding data. A structure‐based position‐specific scoring matrix (SB‐PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB‐PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA‐based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi‐scale pipeline can readily be applied to other protein‐peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence‐based prediction models is not available. Proteins 2016; 84:1390–1407. © 2016 Wiley Periodicals, Inc.  相似文献   
119.
Purinergic Signalling - Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora of endothelial functions in the lung such as...  相似文献   
120.
Microbial consortia can be used to catalyze complex biotransformations. Tools to control the behavior of these consortia in a technical environment are currently lacking. In the present study, a synthetic biology approach was used to build a model consortium of two Saccharomyces cerevisiae strains where growth and expression of the fluorescent marker protein EGFP by the receiver strain is controlled by the concentration of α‐factor pheromone, which is produced by the emitter strain. We have developed a quantitative experimental and theoretical framework to describe population dynamics in the model consortium. We measured biomass growth and metabolite production in controlled bioreactor experiments, and used flow cytometry to monitor changes of the subpopulations and protein expression under different cultivation conditions. This dataset was used to parameterize a segregated mathematical model, which took into account fundamental growth processes, pheromone‐induced growth arrest and EGFP production, as well as pheromone desensitization after extended exposure. The model was able to predict the growth dynamics of single‐strain cultures and the consortium quantitatively and provides a basis for using this approach in actual biotransformations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号