首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2685篇
  免费   250篇
  2023年   7篇
  2022年   16篇
  2021年   36篇
  2020年   23篇
  2019年   36篇
  2018年   58篇
  2017年   43篇
  2016年   86篇
  2015年   115篇
  2014年   135篇
  2013年   147篇
  2012年   198篇
  2011年   197篇
  2010年   150篇
  2009年   138篇
  2008年   176篇
  2007年   165篇
  2006年   133篇
  2005年   129篇
  2004年   134篇
  2003年   138篇
  2002年   129篇
  2001年   23篇
  2000年   18篇
  1999年   27篇
  1998年   36篇
  1997年   32篇
  1996年   27篇
  1995年   39篇
  1994年   26篇
  1993年   36篇
  1992年   34篇
  1991年   21篇
  1990年   22篇
  1989年   24篇
  1988年   20篇
  1987年   9篇
  1986年   11篇
  1985年   14篇
  1984年   10篇
  1983年   9篇
  1982年   10篇
  1981年   13篇
  1980年   11篇
  1979年   8篇
  1978年   10篇
  1977年   11篇
  1975年   6篇
  1972年   6篇
  1970年   7篇
排序方式: 共有2935条查询结果,搜索用时 15 毫秒
991.
The hypothesis that plant species diversity and genetic variation of the host species decrease the severity of plant diseases is supported by studies of agricultural systems, but experimental evidence from more complex systems is scarce. In an experiment with grassland communities of varying species richness (1, 2, 4, 8, 16, and 60 species) and functional group richness (1, 2, 3, and 4 functional groups), we used different cultivars of Lolium perenne (perennial ryegrass) to study effects of biodiversity and cultivar identity on the occurrence and severity of foliar fungal diseases caused by Puccinia coronata (crown rust) and P. graminis (stem rust). Cultivar monocultures of perennial ryegrass revealed strong differences in pathogen susceptibility among these cultivars. Disease intensity caused by both rust fungi decreased significantly with growing species richness of species mixtures. The response to the diversity gradient was related to the decreased density and size of the host individuals with increasing species richness. The occurrence of other grass species known to be possible hosts of the pathogens in the experimental mixtures did not promote disease intensity in L. perenne, indicating that there was a high host specificity of pathogen strains. Differences in pathogen susceptibility among perennial ryegrass cultivars persisted independent of diversity treatment, host density and host individual size, but resulted in a cultivar-specific pattern of changes in pathogen infestation across the species-richness gradient. Our study provided evidence that within-species variation in pathogen susceptibility and competitive interactions of the host species with the environment, as caused by species diversity treatments, are key determinants of the occurrence and severity of fungal diseases. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
992.
Increasing pea (Pisum sativum) seed nutritional value and particularly seed protein content, while maintaining yield, is an important challenge for further development of this crop. Seed protein content and yield are complex and unstable traits, integrating all the processes occurring during the plant life cycle. During filling, seeds are the main sink to which assimilates are preferentially allocated at the expense of vegetative organs. Nitrogen seed demand is satisfied partly by nitrogen acquired by the roots, but also by nitrogen remobilized from vegetative organs. In this study, we evaluated the respective roles of nitrogen source capacity and sink strength in the genetic variability of seed protein content and yield. We showed in eight genotypes of diverse origins that both the maximal rate of nitrogen accumulation in the seeds and nitrogen source capacity varied among genotypes. Then, to identify the genetic factors responsible for seed protein content and yield variation, we searched for quantitative trait loci (QTL) for seed traits and for indicators of sink strength and source nitrogen capacity. We detected 261 QTL across five environments for all traits measured. Most QTL for seed and plant traits mapped in clusters, raising the possibility of common underlying processes and candidate genes. In most environments, the genes Le and Afila, which control internode length and the switch between leaflets and tendrils, respectively, determined plant nitrogen status. Depending on the environment, these genes were linked to QTL of seed protein content and yield, suggesting that source-sink adjustments depend on growing conditions.  相似文献   
993.
Oxygen, a source of life and stress   总被引:5,自引:0,他引:5  
  相似文献   
994.
Recent studies have highlighted the importance of paracrine growth factors as mediators of pro-angiogenic effects by endothelial progenitor cells (EPCs), but little is known about the release of lipid-based factors like endocannabinoids by EPCs. In the current study, the release of the endocannabinoids anandamide and 2-arachidonoylglycerol by distinct human EPC sub-types was measured using HPLC/tandem mass-spectrometry. Anandamide release was highest by adult blood colony-forming EPCs at baseline and they also demonstrated increased 2-arachidonoylglycerol release with TNF-alpha stimulation. Treatment of mature endothelial cells with endocannabinoids significantly reduced the induction of the pro-inflammatory adhesion molecule CD106 (VCAM-1) by TNF-alpha.  相似文献   
995.
996.
Unraveling tissue regeneration pathways using chemical genetics   总被引:1,自引:0,他引:1  
Identifying the molecular pathways that are required for regeneration remains one of the great challenges of regenerative medicine. Although genetic mutations have been useful for identifying some molecular pathways, small molecule probes of regenerative pathways might offer some advantages, including the ability to disrupt pathway function with precise temporal control. However, a vertebrate regeneration model amenable to rapid throughput small molecule screening is not currently available. We report here the development of a zebrafish early life stage fin regeneration model and its use in screening for small molecules that modulate tissue regeneration. By screening 2000 biologically active small molecules, we identified 17 that specifically inhibited regeneration. These compounds include a cluster of glucocorticoids, and we demonstrate that transient activation of the glucocorticoid receptor is sufficient to block regeneration, but only if activation occurs during wound healing/blastema formation. In addition, knockdown of the glucocorticoid receptor restores regenerative capability to nonregenerative, glucocorticoid-exposed zebrafish. To test whether the classical anti-inflammatory action of glucocorticoids is responsible for blocking regeneration, we prevented acute inflammation following amputation by antisense repression of the Pu.1 gene. Although loss of Pu.1 prevents the inflammatory response, regeneration is not affected. Collectively, these results indicate that signaling from exogenous glucocorticoids impairs blastema formation and limits regenerative capacity through an acute inflammation-independent mechanism. These studies also demonstrate the feasibility of exploiting chemical genetics to define the pathways that govern vertebrate regeneration.  相似文献   
997.
Chloroplast envelope quinone oxidoreductase (ceQORH) is an inner plastid envelope protein that is synthesized without cleavable chloroplast transit sequence for import. In the present work, we studied the in vitro-import characteristics of Arabidopsis ceQORH. We demonstrate that ceQORH import requires ATP and is dependent on proteinaceous receptor components exposed at the outer plastid surface. Competition experiments using small subunit precursor of ribulose-bisphosphate carboxylase/oxygenase and precursor of ferredoxin, as well as antibody blocking experiments, revealed that ceQORH import does not involve the main receptor and translocation channel proteins Toc159 and Toc75, respectively, which operate in import of proteins into the chloroplast. Molecular dissection of the ceQORH amino acid sequence by site-directed mutagenesis and subsequent import experiments in planta and in vitro highlighted that ceQORH consists of different domains that act concertedly in regulating import. Collectively, our results provide unprecedented evidence for the existence of a specific import pathway for transit sequence-less inner plastid envelope membrane proteins into chloroplasts.  相似文献   
998.
Reduviidae and some other groups of cimicomorphan Heteroptera possess a hairy attachment structure on the apex of the tibia called “fossula spongiosa”. The fossula spongiosa was never studied comparatively across Reduviidae, its fine structure and mode of function is not well documented, and attachment structures in immature stages are virtually unknown. Here, a sample of 171 species of Reduviidae representing 22 subfamilies is examined for presence-absence of the fossula spongiosa on the three pairs of legs. Representatives of 11 of the 22 subfamilies are shown to possess a fossula spongiosa. The fine structure of the fossula spongiosa is examined for a more limited sample of Reduviidae and several Pachynomidae and Nabidae. In addition, scanning micrographs for the fossula spongiosa in other Cimicomorpha are given, among them Anthocoridae, Cimicidae, Microphysidae (first record of a fossula spongiosa), and Thaumastocoridae. The fossula spongiosa in Reduviidae consists of tenent hairs (acanthae) with spatulate or tapering apices interspersed with sensory setae, both of which are embedded in a thick and flexible cuticle, underlain by a hemolymph cavity separated almost entirely from the interior of the remaining tibia by a cuticular invagination. Judging from comparison with non-reduviid Cimicomorpha, this separation of the fossula spongiosa cavity from the tibial interior may be unique to Reduviidae. A simple experiment using live specimens of Platymeris biguttata (Reduviinae) revealed a liquid on the tip of the tenent hairs that might be involved in the attachment of the fossula spongiosa by adhesion mechanisms. The nymphs of Reduviidae whose adults have a fossula spongiosa are here documented for the first time to possess pads of ventrally barbed setae instead of tenent hairs and their tibia lacks the internal cuticular invagination. The nymphal attachment structures seem to rely on increase of friction rather than the adhesion mechanism proposed to be present in the adult. Combined with the tenent setae on the third tarsomere known in some Emesinae and here documented for Saicinae, three types of hairy attachment structures occur on the legs of Reduviidae: tenent hairs (acanthae), which form the fossula spongiosa in many Reduviidae, barbed setae that substitute the fossula in the immatures, and tenent setae on the tarsus which are restricted to only a few taxa.  相似文献   
999.
The PsbP-like protein of the cyanobacterium Synechocystis sp. PCC 6803 is a peripheral component of Photosystem II, located at the lumenal side of the thylakoid membrane. Removal of this protein leads to decreased competitive potential of a PsbP-like deletion mutant when grown in a mixture with wild-type cells. Flash-induced oxygen evolution traces of the mutant show a higher probability of misses, correlated with increased amplitudes of the S-states decay in the dark. Thermoluminescence emission traces demonstrate a changed charge recombination pattern in the mutant, the S(3)Q(B)(-) couple becoming the major species instead of the S(2)Q(B)(-). Our data suggest a possible role of the PsbP-like protein in stabilisation of the charge separation in Photosystem II of cyanobacteria through interaction with the Mn cluster.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号