首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2731篇
  免费   250篇
  2023年   8篇
  2022年   16篇
  2021年   36篇
  2020年   23篇
  2019年   40篇
  2018年   59篇
  2017年   43篇
  2016年   87篇
  2015年   117篇
  2014年   135篇
  2013年   151篇
  2012年   202篇
  2011年   199篇
  2010年   151篇
  2009年   139篇
  2008年   177篇
  2007年   167篇
  2006年   133篇
  2005年   130篇
  2004年   134篇
  2003年   138篇
  2002年   129篇
  2001年   25篇
  2000年   21篇
  1999年   28篇
  1998年   36篇
  1997年   32篇
  1996年   27篇
  1995年   39篇
  1994年   26篇
  1993年   36篇
  1992年   35篇
  1991年   22篇
  1990年   22篇
  1989年   25篇
  1988年   21篇
  1987年   10篇
  1986年   12篇
  1985年   14篇
  1984年   10篇
  1983年   10篇
  1982年   10篇
  1981年   13篇
  1980年   11篇
  1979年   7篇
  1978年   10篇
  1977年   11篇
  1972年   6篇
  1970年   9篇
  1967年   7篇
排序方式: 共有2981条查询结果,搜索用时 15 毫秒
211.
Bacterial sialyltransferases of the glycosyltransferase family GT-80 exhibit pronounced hydrolase activity toward CMP-activated sialyl donor substrates. Using in situ proton NMR, we show that hydrolysis of CMP-Neu5Ac by Pasteurella dagmatis α2,3-sialyltransferase (PdST) occurs with axial-to-equatorial inversion of the configuration at the anomeric center to release the α-Neu5Ac product. We propose a catalytic reaction through a single displacement-like mechanism where water replaces the sugar substrate as a sialyl group acceptor. PdST variants having His284 in the active site replaced by Asn, Asp or Tyr showed up to 104-fold reduced activity, but catalyzed CMP-Neu5Ac hydrolysis with analogous inverting stereochemistry. The proposed catalytic role of His284 in the PdST hydrolase mechanism is to facilitate the departure of the CMP leaving group.  相似文献   
212.
Freshwater biodiversity has shown to be highly vulnerable to climate warming, alpine cold stenotherm populations being especially at risk of getting extinct. This paper aims at identifying the environmental factors favouring cold stenotherm species in alpine ponds. This information is required to provide management recommendations for habitats restoration or creation, needed for the mitigation of the effects of climate warming on alpine freshwater biodiversity. Cold stenotherm species richness as well as total (i.e. stenotherm and eurytherm) richness were analyzed for aquatic plants, Coleoptera and Odonata in 26 subalpine and alpine ponds from Switzerland and were related to environmental factors ecologically relevant for pond biodiversity. Our results confirmed that the set of environmental variables governing pond biodiversity in alpine or subalpine ponds is specific to altitude. Altitude and macrophyte presence were important drivers of cold stenotherm and total species richness, whereas connectivity did not show any significant relation. Therefore, the management of pond biodiversity has to be ‘altitude-specific’. Nevertheless, cold stenotherm species from the investigated alpine ponds do not show some specific requirements if compared to the other species inhabiting these ponds. Therefore, both total and cold stenotherm species richness could be favoured by the same management measures.  相似文献   
213.
Heme-containing peroxidases secreted by fungi are a fascinating group of biocatalysts with various ecological and biotechnological implications. For example, they are involved in the biodegradation of lignocelluloses and lignins and participate in the bioconversion of other diverse recalcitrant compounds as well as in the natural turnover of humic substances and organohalogens. The current review focuses on the most recently discovered and novel types of heme-dependent peroxidases, aromatic peroxygenases (APOs), and dye-decolorizing peroxidases (DyPs), which catalyze remarkable reactions such as peroxide-driven oxygen transfer and cleavage of anthraquinone derivatives, respectively, and represent own separate peroxidase superfamilies. Furthermore, several aspects of the “classic” fungal heme-containing peroxidases, i.e., lignin, manganese, and versatile peroxidases (LiP, MnP, and VP), phenol-oxidizing peroxidases as well as chloroperoxidase (CPO), are discussed against the background of recent scientific developments.  相似文献   
214.
The jelly fungus Auricularia auricula-judae produced an enzyme with manganese-independent peroxidase activity during growth on beech wood (∼300 U l−1). The same enzymatic activity was detected and produced at larger scale in agitated cultures comprising of liquid, plant-based media (e.g. tomato juice suspensions) at levels up to 8,000 U l−1. Two pure peroxidase forms (A. auricula-judae peroxidase (AjP I and AjP II) could be obtained from respective culture liquids by three chromatographic steps. Spectroscopic and electrophoretic analyses of the purified proteins revealed their heme and peroxidase nature. The N-terminal amino acid sequence of AjP matched well with sequences of fungal enzymes known as “dye-decolorizing peroxidases”. Homology was found to the N-termini of peroxidases from Marasmius scorodonius (up to 86%), Thanatephorus cucumeris (60%), and Termitomyces albuminosus (60%). Both enzyme forms catalyzed not only the conversion of typical peroxidase substrates such as 2,6-dimethoxyphenol and 2,2′-azino-bis(3-ethylthiazoline-6-sulfonate) but also the decolorization of the high-redox potential dyes Reactive Blue 5 and Reactive Black 5, whereas manganese(II) ions (Mn2+) were not oxidized. Most remarkable, however, is the finding that both AjPs oxidized nonphenolic lignin model compounds (veratryl alcohol; adlerol, a nonphenolic β-O-4 lignin model dimer) at low pH (maximum activity at pH 1.4), which indicates a certain ligninolytic activity of dye-decolorizing peroxidases.  相似文献   
215.
The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents. Normal and diabetic rats received a single exenatide dose (0.072, 0.24, and 0.72 nmol/kg) or vehicle. Diabetic ob/ob or HF-STZ mice were infused with exenatide (1.2 and 7.2 nmol·kg(-1)·day(-1)) or vehicle for 4 wk. Post-exenatide treatment, pancreatitis was induced with caerulein (CRN) or sodium taurocholate (ST), and changes in plasma amylase and lipase were measured. In ob/ob mice, plasma cytokines (IL-1β, IL-2, IL-6, MCP-1, IFNγ, and TNFα) and pancreatitis-associated genes were assessed. Pancreata were weighed and examined histologically. Exenatide treatment alone did not modify plasma amylase or lipase in any models tested. Exenatide attenuated CRN-induced release of amylase and lipase in normal rats and ob/ob mice but did not modify the response to ST infusion. Plasma cytokines and pancreatic weight were unaffected by exenatide. Exenatide upregulated Reg3b but not Il6, Ccl2, Nfkb1, or Vamp8 expression. Histological analysis revealed that the highest doses of exenatide decreased CRN- or ST-induced acute inflammation, vacuolation, and acinar single cell necrosis in mice and rats, respectively. Ductal cell proliferation rates were low and similar across all groups of ob/ob mice. In conclusion, exenatide did not modify plasma amylase and lipase concentrations in rodents without pancreatitis and improved chemically induced pancreatitis in normal and diabetic rodents.  相似文献   
216.
The eukaryotic translation initiation factor 4GI (eIF4GI) serves as a central adapter in cap-binding complex assembly. Although eIF4GI has been shown to be sensitive to proteasomal degradation, how the eIF4GI steady-state level is controlled remains unknown. Here, we show that eIF4GI exists in a complex with NAD(P)H quinone-oxydoreductase 1 (NQO1) in cell extracts. Treatment of cells with dicumarol (dicoumarol), a pharmacological inhibitor of NQO1 known to preclude NQO1 binding to its protein partners, provokes eIF4GI degradation by the proteasome. Consistently, the eIF4GI steady-state level also diminishes upon the silencing of NQO1 (by transfection with small interfering RNA), while eIF4GI accumulates upon the overexpression of NQO1 (by transfection with cDNA). We further reveal that treatment of cells with dicumarol frees eIF4GI from mRNA translation initiation complexes due to strong activation of its natural competitor, the translational repressor 4E-BP1. As a consequence of cap-binding complex dissociation and eIF4GI degradation, protein synthesis is dramatically inhibited. Finally, we show that the regulation of eIF4GI stability by the proteasome may be prominent under oxidative stress. Our findings assign NQO1 an original role in the regulation of mRNA translation via the control of eIF4GI stability by the proteasome.In eukaryotes, eukaryotic translation initiation factor 4G (eIF4G) plays a central role in the recruitment of ribosomes to the mRNA 5′ end and is therefore critical for the regulation of protein synthesis (14). Two homologues of eIF4G, eIF4GI and eIF4GII, have been cloned (15). Although they differ in various respects, both homologues clearly function in translation initiation. The most thoroughly studied of these is eIF4GI, which serves as a scaffolding protein for the assembly of eIF4F, a protein complex composed of eIF4E (the mRNA cap-binding factor) and eIF4A (an ATP-dependent RNA helicase). Thus, via its association with the mRNA cap-binding protein eIF4E and with another translation initiation factor (eIF3) which is bound to the 40S ribosomal subunit, eIF4GI creates a physical link between the mRNA cap structure and the ribosome, thus facilitating cap-dependent translation initiation (25). eIF4GI functions also in cap-independent, internal ribosome entry site (IRES)-mediated translation initiation. For instance, upon picornavirus infection, eIF4G is rapidly attacked by viral proteases. The resulting eIF4GI cleavage products serve to reprogram the cell''s translational machinery, as the N-terminal cleavage product inhibits cap-dependent translation of host cell mRNAs by sequestering eIF4E while the C-terminal cleavage product stimulates IRES-mediated translation of viral mRNAs (23). Similarly, apoptotic caspases cleave eIF4G into an N-terminal fragment that blocks cap-dependent translation and a C-terminal fragment that is utilized for IRES-mediated translation of mRNAs encoding proapoptotic proteins (22).The regulation of eIF4GI cleavage by viral proteases or apoptotic caspases has been extensively studied. Little is known, however, about the regulation of eIF4GI steady-state levels. Yet the eIF4GI amount that exists at a given moment results from the sum of the effects of de novo synthesis and ongoing degradation. Many cellular proteins are physiologically degraded by the proteasome. This has been shown to be true for eIF4GI, as the factor can be degraded by the proteasome in vitro (5) and in living cells (6). However, how eIF4GI targeting for or protection from destruction by the proteasome is regulated remains unknown.There are two major routes to degradation by the proteasome. In the more conventional route, polyubiquitinated proteins are targeted to the 26S proteasome. Alternatively, a few proteins can be degraded by the 20S proteasome (and sometimes by the 26S proteasome) in a ubiquitin-independent manner (16). Interestingly, it has been shown recently that a few of these proteins (1, 2, 13) can be protected from degradation by the 20S proteasome by binding to the NAD(P)H quinone-oxydoreductase 1 (NQO1). It has been proposed that NQO1 may interact with the 20S proteasome and may consequently block access of target proteins to the 20S degradation core. Because eIF4GI can be degraded in vitro by the 20S proteasome (5) and since it appears that proteasomes can degrade eIF4GI in living cells independently of ubiquitination (6), we asked whether NQO1 could protect eIF4GI from degradation by the proteasome.  相似文献   
217.
Alternative splicing is regulated in part by variations in the relative concentrations of a variety of factors, including serine/arginine-rich (SR) proteins. The SR protein SC35 self-regulates its expression by stimulating unproductive splicing events in the 3′ untranslated region of its own pre-mRNA. Using various minigene constructs containing the terminal retained intron and flanking exons, we identified in the highly conserved last exon a number of exonic splicing enhancer elements responding specifically to SC35, and showed an inverse correlation between affinity of SC35 and enhancer strength. The enhancer region, which is included in a long stem loop, also contains repressor elements, and is recognized by other RNA-binding proteins, notably hnRNP H protein and TAR DNA binding protein (TDP-43). Finally, in vitro and in cellulo experiments indicated that hnRNP H and TDP-43 antagonize the binding of SC35 to the terminal exon and specifically repress the use of SC35 terminal 3′ splice site. Our study provides new information about the molecular mechanisms of SC35-mediated splicing activation. It also highlights the existence of a complex network of self- and cross-regulatory mechanisms between splicing regulators, which controls their homeostasis and offers many ways of modulating their concentration in response to the cellular environment.  相似文献   
218.
Invadosomes are adhesion structures involved in tissue invasion that are characterized by an intense actin polymerization–depolymerization associated with β1 and β3 integrins and coupled to extracellular matrix (ECM) degradation activity. We induced the formation of invadosomes by expressing the constitutive active form of Src, SrcYF, in different cell types. Use of ECM surfaces micropatterned at the subcellular scale clearly showed that in mesenchymal cells, integrin signaling controls invadosome activity. Using β1−/− or β3−/− cells, it seemed that β1A but not β3 integrins are essential for initiation of invadosome formation. Protein kinase C activity was shown to regulate autoassembly of invadosomes into a ring-like metastructure (rosette), probably by phosphorylation of Ser785 on the β1A tail. Moreover, our study clearly showed that β1A links actin dynamics and ECM degradation in invadosomes. Finally, a new strategy based on fusion of the photosensitizer KillerRed to the β1A cytoplasmic domain allowed specific and immediate loss of function of β1A, resulting in disorganization and disassembly of invadosomes and formation of focal adhesions.  相似文献   
219.
Adipocyte dysfunction plays a major role in the outcome of obesity, insulin resistance and related cardiovascular complications. Thus, considerable efforts are underway in the pharmaceutical industry to find molecules that target the now well-documented pleiotropic functions of adipocyte. We previously reported that the dietary flavonoid phloretin enhances 3T3-L1 adipocyte differentiation and adiponectin expression at least in part through PPARγ activation. The present study was designed to further characterize the molecular mechanisms underlying the phloretin-mediated effects on 3T3-L1 adipocytes using microarray technology. We show that phloretin positively regulates the expression of numerous genes involved in lipogenesis and triglyceride storage, including GLUT4, ACSL1, PEPCK1, lipin-1 and perilipin (more than twofold). The expression of several genes encoding adipokines, in addition to adiponectin and its receptor, is positively or negatively regulated in a way that suggests a possible reduction in systemic insulin resistance and obesity-associated inflammation. Improvement of insulin sensitivity is also suggested by the overexpression of genes associated with insulin signal transduction, such as CAP, PDK1 and Akt2. Many of these genes are PPARγ targets, confirming the involvement of PPARγ pathway in the phloretin effects on adipocytes. In light of these microarray data, it is reasonable to assume that phloretin may be beneficial for reducing insulin resistance, in a similar way to the thiazolidinedione class of antidiabetic drugs.  相似文献   
220.
Background To determine the correlation between protection and humoral immune response against simian immunodeficiency virus (SIVmac251), 11 macaques were immunized with live‐attenuated SIVmac239Δnef either intravenously or via the tonsils and exposed to SIVmac251 after either 6 or 15 months along with unvaccinated controls. Results Independent of the route of vaccine application, viremia was significantly reduced in vaccinees compared with controls 2 weeks post‐challenge. Concomitantly, viremia correlated inversely with SIV‐specific IgG, complement‐mediated lysis and neutralizing antibodies and these parameters seemed to contribute to reduced viremia. During chronic infection, six monkeys controlled viremia in the circulation (two or fewer infectious units per 106 PBMCs) and showed no signs of trapping in lymphatic tissues (Appendix S1). Conclusions As no significant differences were observed throughout the study, with respect to the humoral immune response and viremia control, between the two vaccinated cohorts, mucosal immunization strategies are recommended due to more simplified application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号