首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2770篇
  免费   251篇
  3021篇
  2023年   7篇
  2022年   16篇
  2021年   38篇
  2020年   24篇
  2019年   38篇
  2018年   59篇
  2017年   44篇
  2016年   88篇
  2015年   116篇
  2014年   136篇
  2013年   154篇
  2012年   206篇
  2011年   203篇
  2010年   153篇
  2009年   139篇
  2008年   178篇
  2007年   167篇
  2006年   138篇
  2005年   133篇
  2004年   136篇
  2003年   144篇
  2002年   134篇
  2001年   28篇
  2000年   21篇
  1999年   31篇
  1998年   39篇
  1997年   32篇
  1996年   30篇
  1995年   39篇
  1994年   26篇
  1993年   38篇
  1992年   36篇
  1991年   21篇
  1990年   22篇
  1989年   24篇
  1988年   21篇
  1987年   9篇
  1986年   11篇
  1985年   14篇
  1984年   9篇
  1983年   10篇
  1982年   10篇
  1981年   13篇
  1980年   11篇
  1979年   6篇
  1978年   10篇
  1977年   11篇
  1975年   8篇
  1972年   6篇
  1970年   7篇
排序方式: 共有3021条查询结果,搜索用时 0 毫秒
151.
Maintenance of physiologic phosphate balance is of crucial biological importance, as it is fundamental to cellular function, energy metabolism, and skeletal mineralization. Fibroblast growth factor-23 (FGF-23) is a master regulator of phosphate homeostasis, but the molecular mechanism of such regulation is not yet completely understood. Targeted disruption of the Fgf-23 gene in mice (Fgf-23-/-) elicits hyperphosphatemia, and an increase in renal sodium/phosphate co-transporter 2a (NaPi2a) protein abundance. To elucidate the pathophysiological role of augmented renal proximal tubular expression of NaPi2a in Fgf-23-/- mice and to examine serum phosphate-independent functions of Fgf23 in bone, we generated a new mouse line deficient in both Fgf-23 and NaPi2a genes, and determined the effect of genomic ablation of NaPi2a from Fgf-23-/- mice on phosphate homeostasis and skeletal mineralization. Fgf-23-/-/NaPi2a-/- double mutant mice are viable and exhibit normal physical activities when compared to Fgf-23-/- animals. Biochemical analyses show that ablation of NaPi2a from Fgf-23-/- mice reversed hyperphosphatemia to hypophosphatemia by 6 weeks of age. Surprisingly, despite the complete reversal of serum phosphate levels in Fgf-23-/-/NaPi2a-/-, their skeletal phenotype still resembles the one of Fgf23-/- animals. The results of this study provide the first genetic evidence of an in vivo pathologic role of NaPi2a in regulating abnormal phosphate homeostasis in Fgf-23-/- mice by deletion of both NaPi2a and Fgf-23 genes in the same animal. The persistence of the skeletal anomalies in double mutants suggests that Fgf-23 affects bone mineralization independently of systemic phosphate homeostasis. Finally, our data support (1) that regulation of phosphate homeostasis is a systemic effect of Fgf-23, while (2) skeletal mineralization and chondrocyte differentiation appear to be effects of Fgf-23 that are independent of phosphate homeostasis.  相似文献   
152.
Commelina cammunis L., a monocotyledonous plant whose stomata are highly sensitive to calcium ions, was used to study calmodulin (CaM) involvement in stomatal movements. CaM was detected and quantified in guard cell and mesophyll cell protoplasts by western blot and by 45Ca2+-overlays. CaM was found to be 3- to 7-fold more abundant on a per protein basis in guard cell than in mesophyll cell protoplasts. Numerous guard cell proteins that bind CaM in a Ca2+-dependent manner were detected by gold-labelled CaM overlays. Using bioassays with epidermal strips, different CaM-antagonists were found to induce a net stimulation of stomatal opening in darkness or under illumination (trifluoperazine > compound 48/80 ∼ fluphenazine > W7 > W5). As CaM is frequently involved in the regulation of phosphorylation processes, the effects of different inhibitors of protein kinases on stomatal movements were studied. In red plus blue light, a promotion of the stomatal aperture was observed in the nanomolar range with K252a and KT5926 and in the micromolar range with KT5720 ≫ ML7 ∼ ML9 ≫ H7 > KN62. Only the inhibitors with a high specificity for Ca2+-CaM dependent protein kinases (K252a, KT5926, ML7, ML9) triggered a stomatal opening in darkness and increased stomatal aperture in red plus blue light. Taken together, these data strongly suggest that a Ca2+- or a Ca2+-CaM-dependent protein kinase plays a central role in the calcium transduction pathway leading to the maintaining of stomatal closure.  相似文献   
153.
There has been indirect evidence that the olfactory system of mammals could be functional shortly before birth. Taking advantage of the accessibility of bird embryos, we studied the functional maturation of the olfactory mucosa during embryonic development in birds. Using the combination of electrophysiological EOG recordings and immunohistochemical studies, it was possible to directly demonstrate for the first time that the olfactory system is functional during embryogenesis from embryonic day (ED) 13 and that the beginning of olfactory function coincides with the first localization of the calcium dependent calmodulin kinase II (CaMKIIalpha) in the dendrites of the olfactory receptor neurons. CaMKII and olfactory receptor genes are expressed much earlier in olfactory neurons, both involved in the sensory transduction, but the pattern of expression of CaMKIIalpha changes during the ontogenesis. The increase of EOG amplitude between ED13 and ED15 also coincides with the increase of the number of neurons presenting the dendritic localization of CaMKIIalpha. These results suggest that the enzyme CaMKII might play a role in the functional maturation of the olfactory mucosa.  相似文献   
154.
The Mre11:Rad50 complex is central to DNA double strand break repair in the Archaea and Eukarya, and acts through mechanical and nuclease activities regulated by conformational changes induced by ATP binding and hydrolysis. Despite the widespread use of Mre11 and Rad50 from hyperthermophilic archaea for structural studies, little is known in the regulation of these proteins in the Archaea. Using purification and mass spectrometry approaches allowing nearly full sequence coverage of both proteins from the species Sulfolobus acidocaldarius, we show for the first time post‐translational methylation of the archaeal Mre11:Rad50 complex. Under basal growth conditions, extensive lysine methylations were identified in Mre11 and Rad50 dynamic domains, as well as methylation of a few aspartates and glutamates, including a key Mre11 aspartate involved in nuclease activity. Upon γ‐irradiation induced DNA damage, additional methylated residues were identified in Rad50, notably methylation of Walker B aspartate and glutamate residues involved in ATP hydrolysis. These findings strongly suggest a key role for post‐translational methylation in the regulation of the archaeal Mre11:Rad50 complex and in the DNA damage response.  相似文献   
155.
The Méry-sur-Oise (France) storage reservoir is an artificial basin of 9 m average depth, fed by water from the river Oise with a mean residence time of about 4 days. Sediments are accumulating at a rate of about 0.7 cm/month. In the sediments, two fractions of organic nitrogen with different rates of bacterial degradation could be distinguished, one associated with fresh phytoplankton, the other made of detrital and more refractory compounds. The fluxes of oxygen, nitrate and ammonium across the sediment-water interface were measured with a bell-jar system at different seasons during a 3 year period following flooding of the basin. The measurements show clear seasonal variations in relation with the variations of temperature and input of fresh phytoplanktonic material to the sediment. In addition, a long term trend of increasing ammonium was observed. Measurements were also carried out after dredging of all accumulated sediments of the basin. They showed a considerable reduction of the flux of nitrate to the sediments and a significant reduction of the flux of ammonium to the water column.These results are interpreted in the light of a non stationary model of N diagenesis in accumulating sediments. This model is able to predict at least the general trends of benthic N cycling of basins during the early stage of their ecological succession.  相似文献   
156.
Regeneration of plants from maize cytoplasmic male sterile type T (cmsT) callus tissue culture promotes, in some instances, genetic variability in their mitochondrial genomes. These mutations have been analyzed in various cmsT regenerated plants that have or have not regained the male fertile phenotype. A unique multi-recombination model explains the various mitochondrial genome rearrangements. First, recombination involving two different sets of direct repeats gives rise to subgenomic recombinant circles. Second, intermolecular recombination between some selected subgenomes gives rise to a new rearranged master chromosome. The consequence of these events is the formation of a new master chromosome containing sequence deletions and duplications when compared to the progenitor. This new mitochondrial genome seems stable, although it does not contain the entire genetic complexity of the progenitor.  相似文献   
157.
Mycobacterium marinum is a close relative of the obligate human pathogen Mycobacterium tuberculosis. As with M. tuberculosis, M. marinum causes intracellular infection of poikilothermic vertebrates and skin infection in humans. It is considered a valid model organism for the study of intracellular pathogenesis of mycobacteria. Low transformation efficiencies for this species have precluded approaches using mutant libraries in pathogenesis studies. We have adapted the conditionally replicating mycobacteriophage phAE94, originally developed as a transposon mutagenesis tool for M. tuberculosis, to meet the specific requirements of M. marinum. Conditions permissive for phage replication in M. tuberculosis facilitated highly efficient transposon delivery in M. marinum. Using this technique we succeeded in generating a representative mutant library of this species, and we conclude that TM4-derived mycobacteriophages are temperature-independent suicide vectors for M. marinum.  相似文献   
158.
The G protein-coupled sst2 somatostatin receptor is a critical negative regulator of cell proliferation. sstII prevents growth factor-induced cell proliferation through activation of the tyrosine phosphatase SHP-1 leading to induction of the cyclin-dependent kinase inhibitor p27Kip1. Here, we investigate the signaling molecules linking sst2 to p27Kip1. In Chinese hamster ovary-DG-44 cells stably expressing sst2 (CHO/sst2), the somatostatin analogue RC-160 transiently stimulates ERK2 activity and potentiates insulin-stimulated ERK2 activity. RC-160 also stimulates ERK2 activity in pancreatic acini isolated from normal mice, which endogenously express sst2, but has no effect in pancreatic acini derived from sst2 knock-out mice. RC-160-induced p27Kip1 up-regulation and inhibition of insulin-dependent cell proliferation are both prevented by pretreatment of CHO/sst2 cells with the MEK1/2 inhibitor PD98059. In addition, using dominant negative mutants, we show that sst2-mediated ERK2 stimulation is dependent on the pertussis toxin-sensitive Gi/o protein, the tyrosine kinase Src, both small G proteins Ras and Rap1, and the MEK kinase B-Raf but is independent of Raf-1. Phosphatidylinositol 3-kinase (PI3K) and both tyrosine phosphatases, SHP-1 and SHP-2, are required upstream of Ras and Rap1. Taken together, our results identify a novel mechanism whereby a Gi/o protein-coupled receptor inhibits cell proliferation by stimulating ERK signaling via a SHP-1-SHP-2-PI3K/Ras-Rap1/B-Raf/MEK pathway.  相似文献   
159.
Micrometric membrane lipid segregation is controversial. We addressed this issue in attached erythrocytes and found that fluorescent boron dipyrromethene (BODIPY) analogs of glycosphingolipids (GSLs) [glucosylceramide (BODIPY-GlcCer) and monosialotetrahexosylganglioside (GM1BODIPY)], sphingomyelin (BODIPY-SM), and phosphatidylcholine (BODIPY-PC inserted into the plasma membrane spontaneously gathered into distinct submicrometric domains. GM1BODIPY domains colocalized with endogenous GM1 labeled by cholera toxin. All BODIPY-lipid domains disappeared upon erythrocyte stretching, indicating control by membrane tension. Minor cholesterol depletion suppressed BODIPY-SM and BODIPY-PC but preserved BODIPY-GlcCer domains. Each type of domain exchanged constituents but assumed fixed positions, suggesting self-clustering and anchorage to spectrin. Domains showed differential association with 4.1R versus ankyrin complexes upon antibody patching. BODIPY-lipid domains also responded differentially to uncoupling at 4.1R complexes [protein kinase C (PKC) activation] and ankyrin complexes (in spherocytosis, a membrane fragility disease). These data point to micrometric compartmentation of polar BODIPY-lipids modulated by membrane tension, cholesterol, and differential association to the two nonredundant membrane:spectrin anchorage complexes. Micrometric compartmentation might play a role in erythrocyte membrane deformability and fragility.  相似文献   
160.
An empirically established chemoimmunotherapy for metastatic melanoma combines the systemic administration of the chemotherapeutic agent dacarbazine (DTIC) with the epifocal application of the contact sensitizer 2,4-dinitrochlorobenzene (DNCB) on cutaneous metastases. Although this therapy yields high response rates resulting in prolonged survival, the mechanisms involved remain unknown. Here, we investigated whether treatment of tumor-bearing mice with DTIC and DNCB resulted in a specific immune response against the tumor. Subcutaneous (s.c.) tumors and lung metastases were induced in C57BL/6 mice by injecting syngeneic B16-melanoma cells s.c. or into the lateral tail vein, respectively. Mice were treated with intraperitoneal injections of DTIC followed by epifocal application of DNCB. This therapeutic approach significantly reduced the growth of s.c. tumors as well as lung metastases. Our data showed that the effector mechanisms involved are dependent on T cells. No therapeutic effect was observed in immunodeficient RAG-1(-/-) mice, or when the contact sensitizer DNCB was replaced by skin irritants (croton oil or tributyltin). Splenic lymphocytes obtained from treated mice displayed a three-fold higher specific cytolytic activity against B16 cells than in tumor-bearing controls. Both CD8(+) and CD4(+) T cells were able to lyse B16 cells. No changes were observed in natural killer (NK) cell activity. Likewise, tumor-infiltrating lymphocytes (TIL) of treated mice showed higher cytolytic activity than that of controls. Analysis of cytokine expression in s.c. tumors revealed increased mRNA levels of interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) in treated tumors. Together, these findings demonstrate the ability of DTIC/DNCB treatment to induce an effective T cell-dependent host immune response against a syngeneic tumor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号