首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   16篇
  182篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   2篇
  2019年   8篇
  2018年   5篇
  2017年   4篇
  2016年   3篇
  2015年   13篇
  2014年   11篇
  2013年   13篇
  2012年   12篇
  2011年   15篇
  2010年   11篇
  2009年   6篇
  2008年   8篇
  2007年   14篇
  2006年   11篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2002年   5篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
101.
Hox genes are instrumental in assigning segmental identity in the developing hindbrain. Auto-, cross- and para-regulatory interactions help establish and maintain their expression. To understand to what extent such regulatory interactions shape neuronal patterning in the hindbrain, we analysed neurogenesis, neuronal differentiation and motoneuron migration in Hoxa1, Hoxb1 and Hoxb2 mutant mice. This comparison revealed that neurogenesis and differentiation of specific neuronal subpopulations in r4 was impaired in a similar fashion in all three mutants, but with different degrees of severity. In the Hoxb1 mutants, neurons derived from the presumptive r4 territory were re-specified towards an r2-like identity. Motoneurons derived from that territory resembled trigeminal motoneurons in both their migration patterns and the expression of molecular markers. Both migrating motoneurons and the resident territory underwent changes consistent with a switch from an r4 to r2 identity. Abnormally migrating motoneurons initially formed ectopic nuclei that were subsequently cleared. Their survival could be prolonged through the introduction of a block in the apoptotic pathway. The Hoxa1 mutant phenotype is consistent with a partial misspecification of the presumptive r4 territory that results from partial Hoxb1 activation. The Hoxb2 mutant phenotype is a hypomorph of the Hoxb1 mutant phenotype, consistent with the overlapping roles of these genes in facial motoneuron specification. Therefore, we have delineated the functional requirements in hindbrain neuronal patterning that follow the establishment of the genetic regulatory hierarchy between Hoxa1, Hoxb1 and Hoxb2.  相似文献   
102.
We examined the influence of short-term exposure of different UV wavebands on the fine-scale kinetics of hypocotyl growth of dim red light-grown cucumbers (Cucumis sativus L.) and other selected dicotyledonous seedlings to evaluate: (1) whether responses induced by UV-B radiation (280-320 nm) are qualitatively different from those induced by UV-A (320-400 nm) radiation, and (2) whether different wavebands within the UV-B elicit different responses. Responses to brief (30 min) irradiations with 3 different UV wavebands all included transient inhibition of elongation during irradiation followed by wavelength specific responses. Irradiations with proportionally greater short wavelength UV-B (37% of UV-B between 280 and 300 nm) induced inhibition of hypocotyl elongation within 20 min of onset of irradiation, while UV-B including only wavelengths longer than 290 nm (and only 8% of UV-B between 290 and 300 nm) induced inhibition of hypocotyl elongation with a lag of 1-2 h. The response to short wavelength UV-B was persistent for at least 24 h, while the response to long wavelength UV-B lasted only 2-3 h. The UV-A treatment induced reductions in elongation rates of approximately 6-9 h following exposure followed by a continued decline in rates for the following 15-18 h. Short wavelength UV-B also induced positive phototropic curvature in both cucumber and Arabidopsis seedlings, and this response was present in nph-1 mutant Arabidopsis seedlings defective in normal blue light phototropism. Reciprocity was not found for the response to short wavelength UV-B. The short wavelength and long wavelength UV-B responses differed in dose-response relationships and both short wavelength responses (phototropic curvature and elongation inhibition) increased sharply at wavelengths below 300 nm. These results indicate that different photosensory processes are involved in mediating growth and morphological responses to short wavelength UV-B (280-300 nm), long wavelength UV-B (essentially 300-320 nm) and UV-A. The existence of two separate types of hypocotyl inhibition responses to UV-B, with one that depends on the intensity of the light source, provides alternate interpretations to findings in other studies of UV-B induced photomorphogenesis and may explain inconsistencies between action spectra for inhibition of stem growth.  相似文献   
103.
104.
The present study aimed at elucidating the molecular identity of the proposed “I1-imidazoline receptors”, i.e. non-adrenoceptor recognition sites via which the centrally acting imidazolines clonidine and moxonidine mediate a major part of their effects. In radioligand binding experiments with [3H]clonidine and [3H]lysophosphatidic acid on intact, 2-adrenoceptor-deficient PC12 cells, moxonidine, clonidine, lysophosphatidic acid and sphingosine-1-phosphate (S1P) competed for the specific binding sites of both radioligands with similar affinities. RNA interference with the rat S1P1-, S1P2- or S1P3-receptor abolished specific [3H]lysophosphatidic acid binding. [3H]Clonidine binding was markedly decreased by siRNA targeting S1P1- and S1P3-receptors but not by siRNA against S1P2-receptors. Finally, in HEK293 cells transiently expressing human S1P3-receptors, sphingosine-1-phosphate, clonidine and moxonidine induced increases in intracellular calcium concentration, moxonidine being more potent than clonidine; this is in agreement with the known properties of the “I1-imidazoline receptors”.

The present results indicate that the “I1-imidazoline receptors” mediating effects of clonidine and moxonidine in PC12 and the transfected HEK293 cells belong to the S1P-receptor family; in particular, the data obtained in PC12 cells suggest that the I1 imidazoline receptors represent a mixture of S1P1- and S1P3-receptors and/or hetero-dimers of both.  相似文献   

105.
Although previous studies demonstrated beneficial effects of estrogen on cardiovascular function, the Women's Health Initiative has reported an increased incidence of coronary heart disease and stroke in postmenopausal women taking hormone replacement therapy. The objective of the present study was to identify a molecular mechanism whereby estrogen, a vasodilatory hormone, could possibly increase the risk of cardiovascular disease. Isometric contractile force recordings were performed on endothelium-denuded porcine coronary arteries, whereas molecular and fluorescence studies identified estrogen signaling molecules in coronary smooth muscle. Estrogen (1-1,000 nM) relaxed arteries in an endothelium-independent fashion; however, when arteries were pretreated with agents to uncouple nitric oxide (NO) production from NO synthase (NOS), estrogen contracted coronary arteries with an EC(50) of 7.3 +/- 4 nM. Estrogen-induced contraction was attenuated by reducing superoxide (O(2)(-)). Estrogen-stimulated O(2)(-) production was detected in NOS-uncoupled coronary myocytes. Interestingly, only the type 1 neuronal NOS isoform (nNOS) was detected in myocytes, making this protein a likely target mediating both estrogen-induced relaxation and contraction of endothelium-denuded coronary arteries. Estrogen-induced contraction was completely inhibited by 1 muM nifedipine or 10 muM indomethacin, indicating involvement of dihydropyridine-sensitive calcium channels and contractile prostaglandins. We propose that a single molecular mechanism can mediate the dual and opposite effect of estrogen on coronary arteries: by stimulating type 1 nNOS in coronary arteries, estrogen produces either vasodilation via NO or vasoconstriction via O(2)(-).  相似文献   
106.
107.
Acute lung injury (ALI) is characterized by increased endothelial hyperpermeability. Protein nitration is involved in the endothelial barrier dysfunction in LPS-exposed mice. However, the nitrated proteins involved in this process have not been identified. The activation of the small GTPase RhoA is a critical event in the barrier disruption associated with LPS. Thus, in this study we evaluated the possible role of RhoA nitration in this process. Mass spectroscopy identified a single nitration site, located at Tyr34 in RhoA. Tyr34 is located within the switch I region adjacent to the nucleotide-binding site. Utilizing this structure, we developed a peptide designated NipR1 (nitration inhibitory peptide for RhoA 1) to shield Tyr34 against nitration. TAT-fused NipR1 attenuated RhoA nitration and barrier disruption in LPS-challenged human lung microvascular endothelial cells. Further, treatment of mice with NipR1 attenuated vessel leakage and inflammatory cell infiltration and preserved lung function in a mouse model of ALI. Molecular dynamics simulations suggested that the mechanism by which Tyr34 nitration stimulates RhoA activity was through a decrease in GDP binding to the protein caused by a conformational change within a region of Switch I, mimicking the conformational shift observed when RhoA is bound to a guanine nucleotide exchange factor. Stopped flow kinetic analysis was used to confirm this prediction. Thus, we have identified a new mechanism of nitration-mediated RhoA activation involved in LPS-mediated endothelial barrier dysfunction and show the potential utility of “shielding” peptides to prevent RhoA nitration in the management of ALI.  相似文献   
108.
109.
In the June 2004 issue of the Journal, Drs. Ribeiro de Castro and coworkers described a new method to determine neopterin concentrations in urine by HPLC and UV-absorption detection [de Castro MR, Di Marco GS, Arita DY, Teixeira LC, Pereira AB, Casarini DE. Urinary neopterin quantification by reverse-phase high-performance liquid chromatography with ultraviolet detection. J Biochem Biophys Methods 2004;59:275-83 ]. Although simple and rapid, unfortunately this report does not consider any possible analytical complications known from the biochemistry of neopterin. The major problem with this method is that the authors did not at all consider possible interferences with related compounds.  相似文献   
110.
In this study, the feasibility of fluorescence lifetime imaging (FLIM) for measurement of RNA:DNA ratios in microorganisms was assessed. The fluorescence lifetime of a nucleic acid-specific probe (SYTO 13) was used to directly measure the RNA:DNA ratio inside living bacterial cells. In vitro, SYTO 13 showed shorter fluorescence lifetimes in DNA solutions than in RNA solutions. Growth experiments with bacterial monocultures were performed in liquid media. The results demonstrated the suitability of SYTO 13 for measuring the growth-phase-dependent RNA:DNA ratio in Escherichia coli cells. The fluorescence lifetime of SYTO 13 reflected the known changes of the RNA:DNA ratio in microbial cells during different growth phases. As a result, the growth rate of E. coli cells strongly correlated with the fluorescence lifetime. Finally, the fluorescence lifetimes of SYTO 13 in slow- and fast-growing biofilms were compared. For this purpose, biofilms developed from activated sludge were grown as autotrophic and heterotrophic communities. The FLIM data clearly showed a longer fluorescence lifetime for the fast-growing heterotrophic biofilms and a shorter fluorescence lifetime for the slow-growing autotrophic biofilms. Furthermore, starved biofilms showed shorter lifetimes than biofilms supplied with glucose, indicating a lower RNA:DNA ratio in starved biofilms. It is suggested that FLIM in combination with SYTO 13 represents a useful tool for the in situ differentiation of active and inactive bacteria. The technique does not require radioactive chemicals and may be applied to a broad range of sample types, including suspended and immobilized microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号