全文获取类型
收费全文 | 20016篇 |
免费 | 1653篇 |
国内免费 | 5篇 |
专业分类
21674篇 |
出版年
2023年 | 88篇 |
2022年 | 232篇 |
2021年 | 432篇 |
2020年 | 233篇 |
2019年 | 306篇 |
2018年 | 423篇 |
2017年 | 353篇 |
2016年 | 636篇 |
2015年 | 1030篇 |
2014年 | 1171篇 |
2013年 | 1409篇 |
2012年 | 1747篇 |
2011年 | 1649篇 |
2010年 | 1062篇 |
2009年 | 936篇 |
2008年 | 1268篇 |
2007年 | 1292篇 |
2006年 | 1105篇 |
2005年 | 1060篇 |
2004年 | 1034篇 |
2003年 | 938篇 |
2002年 | 891篇 |
2001年 | 203篇 |
2000年 | 144篇 |
1999年 | 153篇 |
1998年 | 233篇 |
1997年 | 149篇 |
1996年 | 136篇 |
1995年 | 125篇 |
1994年 | 113篇 |
1993年 | 101篇 |
1992年 | 80篇 |
1991年 | 64篇 |
1990年 | 67篇 |
1989年 | 60篇 |
1988年 | 50篇 |
1987年 | 55篇 |
1986年 | 42篇 |
1985年 | 46篇 |
1984年 | 43篇 |
1983年 | 62篇 |
1982年 | 38篇 |
1981年 | 32篇 |
1980年 | 36篇 |
1979年 | 28篇 |
1978年 | 42篇 |
1977年 | 35篇 |
1976年 | 32篇 |
1975年 | 25篇 |
1974年 | 27篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Oefner PJ Huber CG 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2002,782(1-2):27-55
The introduction of alkylated, nonporous poly-(styrene-divinylbenzene) microparticles in 1992 enabled the subsequent development of denaturing HPLC that has emerged as the most sensitive screening method for mutations to date. Denaturing HPLC has provided unprecedented insight into human origins and prehistoric migrations, accelerated the cloning of genes involved in mono- and polygenic traits, and facilitated the mutational analysis of more than a hundred candidate genes of human disease. A significant step toward increased sample-throughput and information content was accomplished by the recent introduction of monolithic poly(styrene-divinylbenzene) capillary columns. They have enabled the construction of capillary arrays amenable to multiplex analysis of fluorescent dye-labeled nucleic acids by laser-induced fluorescence detection. Hyphenation of denaturing HPLC with electrospray ionization mass spectrometry, on the other hand, has allowed the direct elucidation of the chemical nature of DNA variation and determination of phase of multiple alleles on a chromosome. 相似文献
102.
Huntington's disease (HD) is caused by a CAG triplet repeat expansion in exon 1 of the Huntingtin (Htt) gene, encoding an abnormal expanded polyglutamine (polyQ) tract that confers toxicity to the mutant Htt (mHtt) protein. Recent data suggest that posttranslational modifications of mHtt modulate its cytotoxicity. To further understand the cytotoxic mechanisms of mHtt, we have generated HEK293 cell models stably expressing Strep- and FLAG-tagged Htt containing either 19Q (wild-type Htt), 55Q (mHtt), or 94Q (mHtt) repeats. Following tandem affinity purification, the tagged Htt and associated proteins were subjected to tandem mass spectrometry or 2D nano-LC tandem mass spectrometry and several novel modification sites of mHtt containing 55Q or 94Q were identified. These were phosphorylation sites located at Ser431 and Ser432, and ubiquitination site located at Lys444. The two phosphorylation sites were confirmed by Western blot analysis using phosphorylation site-specific antibodies. In addition, prevention of phosphorylation at the two serine sites altered mHtt toxicity and accumulation. These modifications of mHtt may provide novel therapeutic targets for effective treatment of the disorder. 相似文献
103.
Within 40 years of experimental studies in prebiotic chemistry, most of the building blocks of the living systems have been synthesized in plausible conditions of the primitive Earth. The starting ingredients correspond to two complementary classes: volatile organics, and their non volatile oligomers. They may have been formed in the atmosphere on the primitive Earth and/or imported by extra-terrestrial sources. Organic chemistry is involved in meteorites, comets, in the giant planets and several of their satellites. Again this chemistry presents the two complementary aspects. In particular, with a dense reduced atmosphere rich in organic compounds in gas and aerosol phases, Titan appears as a natural laboratory for studying prebiotic chemistry at a planetary scale. 相似文献
104.
Gradia DF Rau K Umaki AC de Souza FS Probst CM Correa A Holetz FB Avila AR Krieger MA Goldenberg S Fragoso SP 《International journal for parasitology》2009,39(1):49-58
We characterized a gene encoding an YchF-related protein, TcYchF, potentially associated with the protein translation machinery of Trypanosoma cruzi. YchF belongs to the translation factor-related (TRAFAC) class of P-loop NTPases. The coding region of the gene is 1185 bp long and encodes a 44.3 kDa protein. BlastX searches showed TcYchF to be very similar (45-86%) to putative GTP-binding proteins from eukaryotes, including some species of trypanosomatids (Leishmania major and Trypanosoma brucei). A lower but significant level of similarity (38-43%) was also found between the predicted sequences of TcYchF and bacterial YyaF/YchF GTPases of the Spo0B-associated GTP-binding protein (Obg) family. Some of the most important features of the G domain of this family of GTPases are conserved in TcYchF. However, we found that TcYchF preferentially hydrolyzed ATP rather than GTP. The function of YyaF/YchF is unknown, but other members of the Obg family are known to be associated with ribosomal subunits. Immunoblots of the polysome fraction from sucrose gradients showed that TcYchF was associated with ribosomal subunits and polysomes. Immunoprecipitation assays showed that TcYchF was also associated with the proteasome of T. cruzi. Furthermore, inactivation of the T. brucei homolog of TcYchF by RNA interference inhibited the growth of procyclic forms of the parasite. These data suggest that this protein plays an important role in the translation machinery of trypanosomes. 相似文献
105.
Sissy Therese Sonnleitner Stefanie Sonnleitner Eva Hinterbichler Hannah Halbfurter Dominik B.C. Kopecky Stephan Koblmüller Christian Sturmbauer Wilfried Posch Gernot Walder 《中国病毒学》2022,37(2):198-207
Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discussed the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change. 相似文献
106.
Kinetic analysis of the zinc-dependent deacetylase in the lipid A biosynthetic pathway 总被引:1,自引:0,他引:1
The first committed step of lipid A biosynthesis in Gram-negative bacteria is catalyzed by the zinc-dependent hydrolase LpxC that removes an acetate from the nitrogen at the 2' '-position of UDP-3-O-acyl-N-acetylglucosamine. Recent structural characterization by both NMR and X-ray crystallography provides many important details about the active site environment of LpxC from Aquifex aeolicus, a heat-stable orthologue that displays 32% sequence identity to LpxC from Escherichia coli. The detailed reaction mechanism and specific roles of active site residues for LpxC from A. aeolicus are further analyzed here. The pH dependencies of k(cat)/K(M) and k(cat) for the deacetylation of the substrate UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc are both bell-shaped. The ascending acidic limb (pK(1)) was fitted to 6.1 +/- 0.2 for k(cat) and 5.7 +/- 0.2 for k(cat)/K(M). The descending basic limb (pK(2)) was fitted to 8.0 +/- 0.2 for k(cat) and 8.4 +/- 0.2 for k(cat)/K(M). The pH dependence of the E73A mutant exhibits loss of the acidic limb, and the mutant retains only 0.15% activity versus the wild type. The pH dependencies of the other active site mutants H253A, K227A, H253A/K227A, and D234N remain bell-shaped, although their significantly lower activities (0.25%, 0.05%, 0.007%, and 0.57%, respectively) suggest that they contribute significantly to catalysis. Our cumulative data support a mechanism for LpxC wherein Glu73 serves as the general base for deprotonation and activation of the zinc-bound water. 相似文献
107.
Utz S Huetteroth W Wegener C Kahnt J Predel R Schachtner J 《Developmental neurobiology》2007,67(6):764-777
The paired antennal lobes are the first integration centers for odor information in the insect brain. In the sphinx moth Manduca sexta, like in other holometabolous insects, they are formed during metamorphosis. To further understand mechanisms involved in the formation of this particularly well investigated brain area, we performed a direct peptide profiling of a well defined cell group (the lateral cell group) of the antennal lobe throughout development by MALDI-TOF mass spectrometry. Although the majority of the about 100 obtained ion signals represent still unknown substances, this first peptidomic characterization of this cell group indicated the occurrence of 12 structurally known neuropeptides. Among these peptides are helicostatin 1, cydiastatins 2, 3, and 4, M. sexta-allatotropin (Mas-AT), M. sexta-FLRFamide (Mas-FLRFamide) I, II, and III, nonblocked Mas-FLRFamide I, and M. sexta-myoinhibitory peptides (Mas-MIPs) III, V, and VI. The identity of two of the allatostatins (cydiastatins 3 and 4) and Mas-AT were confirmed by tandem mass spectrometry (MALDI-TOF/TOF). During development of the antennal lobe, number and frequency of ion signals including those representing known peptides generally increased at the onset of glomeruli formation at pupal Stage P7/8, with cydiastatin 2, helicostatin 1, and Mas-MIP V being the exceptions. Cydiastatin 2 showed transient occurrence mainly during the period of glomerulus formation, helicostatin 1 was restricted to late pupae and adults, while Mas-MIP V occurred exclusively in adult antennal lobes. The power of the applied direct mass spectrometric profiling lies in the possibility of chemically identifying neuropeptides of a given cell population in a fast and reliable manner, at any developmental stage in single specimens. The identification of neuropeptides in the antennal lobes now allows to specifically address the function of these signaling molecules during the formation of the antennal lobe network. 相似文献
108.
Praefcke GJ Kloep S Benscheid U Lilie H Prakash B Herrmann C 《Journal of molecular biology》2004,344(1):257-269
The guanylate-binding proteins (GBPs) form a group of interferon-gamma inducible GTP-binding proteins which belong to the family of dynamin-related proteins. Like other members of this family, human guanylate-binding protein 1 (hGBP1) shows nucleotide-dependent oligomerisation that stimulates the GTPase activity of the protein. A unique feature of the GBPs is their ability to hydrolyse GTP to GDP and GMP. In order to elucidate the relationship between these findings, we designed point mutants in the phosphate-binding loop (P-loop) as well as in the switch I and switch II regions of the protein based on the crystal structure of hGBP1. These mutant proteins were analysed for their interaction with guanine nucleotides labeled with a fluorescence dye and for their ability to hydrolyse GTP in a cooperative manner. We identified mutations of amino acid residues that decrease GTPase activity by orders of magnitude a part of which are conserved in GTP-binding proteins. In addition, mutants in the P-loop were characterized that strongly impair binding of nucleotide. In consequence, together with altered GTPase activity and given cellular nucleotide concentrations this results in hGBP1 mutants prevailingly resting in the nucleotide-free (K51A and S52N) or the GTP bound form (R48A), respectively. Using size-exclusion chromatography and analytical ultracentrifugation we addressed the impact on protein oligomerisation. In summary, mutants of hGBP1 were identified and biochemically characterized providing hGBP1 locked in defined states in order to investigate their functional role in future cell biology studies. 相似文献
109.
SMN-mediated assembly of RNPs: a complex story 总被引:18,自引:0,他引:18
Although many RNA-protein complexes or ribonucleoproteins (RNPs) assemble spontaneously in vitro, little is known about how they form in the environment of a living cell. Insight into RNP assembly has come unexpectedly from functional analyses of the survival motor neuron (SMN) protein, a gene product that is affected in the neuromuscular disease spinal muscular atrophy. These studies show that the assembly of spliceosomal U-rich small nuclear RNPs in vivo depends on the activity of two large protein complexes, one of which contains the SMN protein. These complexes might also facilitate the assembly of other cellular RNPs. 相似文献
110.
Formation of bacterial biofilms at solid–liquid interfaces creates numerous problems in biomedical sciences. Conventional sterilization and decontamination methods are not suitable for new and more sophisticated biomaterials. In this paper, the efficiency and effectiveness of gas discharges in the inactivation and removal of biofilms on biomaterials were studied. It was found that although discharge oxygen, nitrogen and argon all demonstrated excellent antibacterial and antibiofilm activity, gases with distinct chemical/physical properties underwent different mechanisms of action. Discharge oxygen- and nitrogen-mediated decontamination was associated with strong etching effects, which can cause live bacteria to relocate thus spreading contamination. On the contrary, although discharge argon at low powers maintained excellent antibacterial ability, it had negligible etching effects. Based on these results, an effective decontamination approach using discharge argon was established in which bacteria and biofilms were killed in situ and then removed from the contaminated biomaterials. This novel procedure is applicable for a wide range of biomaterials and biomedical devices in an in vivo and clinical setting. 相似文献