首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19959篇
  免费   1648篇
  国内免费   5篇
  2023年   77篇
  2022年   157篇
  2021年   432篇
  2020年   234篇
  2019年   308篇
  2018年   423篇
  2017年   354篇
  2016年   636篇
  2015年   1031篇
  2014年   1170篇
  2013年   1410篇
  2012年   1748篇
  2011年   1651篇
  2010年   1064篇
  2009年   936篇
  2008年   1267篇
  2007年   1293篇
  2006年   1106篇
  2005年   1062篇
  2004年   1036篇
  2003年   938篇
  2002年   892篇
  2001年   204篇
  2000年   144篇
  1999年   155篇
  1998年   233篇
  1997年   149篇
  1996年   137篇
  1995年   126篇
  1994年   113篇
  1993年   101篇
  1992年   82篇
  1991年   64篇
  1990年   67篇
  1989年   60篇
  1988年   50篇
  1987年   56篇
  1986年   44篇
  1985年   48篇
  1984年   43篇
  1983年   62篇
  1982年   37篇
  1981年   32篇
  1980年   36篇
  1979年   28篇
  1978年   42篇
  1977年   35篇
  1976年   32篇
  1975年   25篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Modulation of the cytoskeletal architecture was shown to regulate the expression of CTGF (connective tissue growth factor, CCN2). The microtubule disrupting agents nocodazole and colchicine strongly up-regulated CTGF expression, which was prevented upon stabilization of the microtubules by paclitaxel. As a consequence of microtubule disruption, RhoA was activated and the actin stress fibers were stabilized. Both effects were related to CTGF induction. Overexpression of constitutively active RhoA induced CTGF synthesis. Interference with RhoA signaling by simvastatin, toxinB, C3 toxin, and Y27632 prevented up-regulation of CTGF. Likewise, direct disintegration of the actin cytoskeleton by latrunculin B interfered with nocodazole-mediated up-regulation of CTGF expression. Disassembly of actin fibers by cytochalasin D, however, unexpectedly increased CTGF expression indicating that the content of F-actin per se was not the major determinant for CTGF gene expression. Given the fact that cytochalasin D sequesters G-actin, a decrease in G-actin increased CTGF, while increased levels of G-actin corresponded to reduced CTGF expression. These data link alterations in the microtubule and actin cytoskeleton to the expression of CTGF and provide a molecular basis for the observation that CTGF is up-regulated in cells exposed to mechanical stress.  相似文献   
952.
The Photosystem I (PS I) reaction center contains two branches of nearly symmetric cofactors bound to the PsaA and PsaB heterodimer. From the x-ray crystal structure it is known that Trp697PsaA and Trp677PsaB are pi-stacked with the head group of the phylloquinones and are H-bonded to Ser692PsaA and Ser672PsaB, whereas Arg694PsaA and Arg674PsaB are involved in a H-bonded network of side groups that connects the binding environments of the phylloquinones and FX. The mutants W697FPsaA, W677FPsaB, S692CPsaA, S672CPsaB, R694APsaA, and R674APsaB were constructed and characterized. All mutants grew photoautotrophically, yet all showed diminished growth rates compared with the wild-type, especially at higher light intensities. EPR and electron nuclear double resonance (ENDOR) studies at both room temperature and in frozen solution showed that the PsaB mutants were virtually identical to the wild-type, whereas significant effects were observed in the PsaA mutants. Spin polarized transient EPR spectra of the P700+A1- radical pair show that none of the mutations causes a significant change in the orientation of the measured phylloquinone. Pulsed ENDOR spectra reveal that the W697FPsaA mutation leads to about a 5% increase in the hyperfine coupling of the methyl group on the phylloquinone ring, whereas the S692CPsaA mutation causes a similar decrease in this coupling. The changes in the methyl hyperfine coupling are also reflected in the transient EPR spectra of P700+A1- and the CW EPR spectra of photoaccumulated A1-. We conclude that: (i) the transient EPR spectra at room temperature are predominantly from radical pairs in the PsaA branch of cofactors; (ii) at low temperature the electron cycle involving P700 and A1 similarly occurs along the PsaA branch of cofactors; and (iii) mutation of amino acids in close contact with the PsaA side quinone leads to changes in the spin density distribution of the reduced quinone observed by EPR.  相似文献   
953.
Gamma-secretase is a high molecular weight multicomponent protein complex with an unusual intramembrane-cleaving aspartyl protease activity. Gamma-secretase is intimately associated with Alzheimer disease because it catalyzes the proteolytic cleavage, which leads to the liberation of amyloid beta-peptide. At least presenilin (PS), Nicastrin (Nct), APH-1, and PEN-2 are constituents of the gamma-secretase complex, with PS apparently providing the active site of gamma-secretase. Expression of gamma-secretase complex components is tightly regulated, however little is known about the assembly of the complex. Here we demonstrate that Nct undergoes a major conformational change during the assembly of the gamma-secretase complex. The conformational change is directly associated with gamma-secretase function and involves the entire Nct ectodomain. Loss of function mutations generated by deletions failed to undergo the conformational change. Furthermore, the conformational alteration did not occur in the absence of PS. Our data thus suggest that gamma-secretase function critically depends on the structural "activation" of Nct.  相似文献   
954.
Haemophilus influenzae has an absolute requirement for NAD (factor V) because it lacks all biosynthetic enzymes necessary for de novo synthesis of that cofactor. Therefore, growth in vitro requires the presence of NAD itself, NMN, or nicotinamide riboside (NR). To address uptake abilities of these compounds, we investigated outer membrane proteins. By analyzing ompP2 knockout mutants, we found that NAD and NMN uptake was prevented, whereas NR uptake was not. Through investigation of the properties of purified OmpP2 in artificial lipid membrane systems, the substrate specificity of OmpP2 for NAD and NMN was determined, with KS values of approximately 8 and 4mm, respectively, in 0.1 m KCl, whereas no interaction was detected for the nucleoside NR and other purine or pyrimidine nucleotide or nucleoside species. Based on our analysis, we assume that an intrinsic binding site within OmpP2 exists that facilitates diffusion of these compounds across the outer membrane, recognizing carbonyl and exposed phosphate groups. Because OmpP2 was formerly described as a general diffusion porin, an additional property of acting as a facilitator for nicotinamide-based nucleotide transport may have evolved to support and optimize utilization of the essential cofactor sources NAD and NMN in H. influenzae.  相似文献   
955.
Scavenger receptor class B, type I (SRBI) is a key regulator of high density lipoprotein (HDL) metabolism. It facilitates the efflux of cholesterol from cells in peripheral tissues to HDL and mediates the selective uptake of cholesteryl esters from HDL in the liver. We investigated the effects of SRBI deficiency in the arterial wall and in the liver using SRBI-deficient mice and wild-type littermates fed a Western-type diet. The SRBI-deficient mice showed massive accumulation of cholesterol-rich HDL in the circulation, reflecting impaired delivery to the liver. Strikingly, SRBI deficiency did not alter hepatic cholesterol (ester) content nor did it affect the expression of key regulators of hepatic cholesterol homeostasis, including HMG-CoA reductase, the low density lipoprotein receptor, and cholesterol 7alpha-hydroxylase. However, a approximately 40% reduction in biliary cholesterol content was observed, and the expression of ABCG8 and ABCG5, ATP half-transporters implicated in the transport of sterols from the liver to the bile, was attenuated by 70 and 35%, respectively. In contrast to the situation in the liver, SRBI deficiency did result in lipid deposition in the aorta and atherosclerosis. Vascular mRNA analysis showed increased expression of inflammatory markers as well as of genes involved in cellular cholesterol homeostasis. Our data show that, although hepatic cholesterol homeostasis is maintained upon feeding a Western-type diet, SRBI deficiency is associated with de-regulation of cholesterol homeostasis in the arterial wall that results in an increased susceptibility to atherosclerosis.  相似文献   
956.
The AAA+ protein ClpB mediates the solubilization of protein aggregates in cooperation with the DnaK chaperone system (KJE). The order of action of ClpB and KJE on aggregated proteins is unknown. We describe a ClpB variant with mutational alterations in the Walker B motif of both AAA domains (E279A/E678A), which binds but does not hydrolyze ATP. This variant associates in vitro and in vivo in a stable manner with protein substrates, demonstrating direct interaction of ClpB with protein aggregates for the first time. Substrate interaction is strictly dependent on ATP binding to both AAA domains of ClpB. The unique substrate binding properties of the double Walker B variant allowed to dissect the order of ClpB and DnaK action during disaggregation reactions. ClpB-E279A/E678A outcompetes the DnaK system for binding to the model substrate TrfA and inhibits the dissociation of small protein aggregates by DnaK only, indicating that ClpB acts prior to DnaK on protein substrates.  相似文献   
957.
Mast cells (MC) are biologically potent, ubiquitously distributed immune cells with fundamental roles in host integrity and disease. MC diversity and function is regulated by exogenous nitric oxide; however, the production and function of endogenously produced NO in MC is enigmatic. We used rat peritoneal MC (PMC) as an in vivo model to examine intracellular NO production. Live cell confocal analysis of PMC using the NO-sensitive probe diaminofluorescein showed distinct patterns of intracellular NO formation with either antigen (Ag)/IgE (short term) or interferon-gamma (IFN-gamma) (long term). Ag/IgE-induced NO production is preceded by increased intracellular Ca2+, implying constitutive nitric-oxide synthase (NOS) activity. NO formation inhibits MC degranulation. NOS has obligate requirements for tetrahydrobiopterin (BH4), a product of GTP-cyclohydrolase I (CHI), IFN-gamma-stimulated PMC increased CHI mRNA, protein, and enzymatic activity, while decreasing CHI feedback regulatory protein mRNA, causing sustained NO production. Treatment with the CHI inhibitor, 2,4-diamino-6-hydroxypyrimidine, inhibited NO in both IFN-gamma and Ag/IgE systems, increasing MC degranulation. Reconstitution with the exogenous BH4 substrate, sepiapterin, restored NO formation and inhibited exocytosis. Thus, Ag/IgE and IFN-gamma induced intracellular NO plays a key role in MC mediator release, and alterations in NOS activity via BH4 availability may be critical to the heterogeneous responsiveness of MC.  相似文献   
958.
959.
Two secretases are involved in the generation of amyloid beta-peptide, the principal component of amyloid plaques in the brains of Alzheimer's disease patients. While beta-secretase is a classical aspartyl protease, gamma-secretase activity is associated with a high molecular weight complex. One of the complex components, which is critically required for gamma-secretase activity is nicastrin (NCT). Here we investigate the assembly of NCT into the gamma-secretase complex. NCT mutants either lacking the entire cytoplasmic tail, the cytoplasmic tail, and the transmembrane domain (TMD), or containing a set of heterologous TMDs were expressed in cells with strongly reduced levels of endogenous NCT. Maturation of exogenous NCT, gamma-secretase complex formation and proteolytic function was then investigated. This revealed that the cytoplasmic tail of NCT is dispensable for gamma-secretase complex assembly and function. In contrast, the authentic TMD of NCT is critically required for the interaction with gamma-secretase complex components and for formation of an active gamma-secretase complex. Neither soluble NCT lacking any membrane anchor nor NCT containing a heterologous TMD were inserted into the gamma-secretase complex. We identified the N-terminal region of the NCT TMD as a functionally important entity of NCT. These data thus demonstrate that NCT interacts with other gamma-secretase complex components via its TMD.  相似文献   
960.
Malonate semialdehyde decarboxylase (MSAD) has been identified as the protein encoded by the orf130 gene from Pseudomonas pavonaceae 170 on the basis of the genomic context of the gene as well as its ability to catalyze the decarboxylation of malonate semialdehyde to generate acetaldehyde. The enzyme is found in a degradative pathway for the xenobiotic nematocide trans-1,3-dichloropropene. MSAD has no sequence homology to previously characterized decarboxylases, but the presence of a conserved motif (Pro1-(X)8 -Gly-Arg11-X-Asp-X-Gln) in its N-terminal region suggested a relationship to the tautomerase superfamily. Sequence analysis identified Pro1 and Arg75 as potential active site residues that might be involved in the MSAD activity. The results of site-directed mutagenesis experiments confirmed the importance of these residues to activity and provided further evidence to implicate MSAD as a new member of the tautomerase superfamily. MSAD is the first identified decarboxylase in the superfamily and is possibly the first characterized member of a new and distinct family within this superfamily. Malonate semialdehyde is analogous to a beta-keto acid, and enzymes that catalyze the decarboxylation of these acids generally utilize metal ion catalysis, a Schiff base intermediate, or polarization of the carbonyl group by hydrogen bonding and/or electrostatic interactions. A mechanistic analysis shows that the rate of the reaction is not affected by the presence of a metal ion or EDTA while the incubation of MSAD with the substrate in the presence of sodium cyanoborohydride results in the irreversible inactivation of the enzyme. The site of modification is Pro1. These observations are consistent with the latter two mechanisms, but do not exclude the first mechanism. Based on the sequence analysis, the outcome of the mutagenesis and mechanistic experiments, and the roles determined for Pro1 and the conserved arginine in all tautomerase superfamily members characterized thus far, two mechanistic scenarios are proposed for the MSAD-catalyzed reaction in which Pro1 and Arg75 play prominent roles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号