首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20018篇
  免费   1651篇
  国内免费   5篇
  21674篇
  2023年   88篇
  2022年   232篇
  2021年   432篇
  2020年   233篇
  2019年   306篇
  2018年   423篇
  2017年   353篇
  2016年   637篇
  2015年   1030篇
  2014年   1169篇
  2013年   1409篇
  2012年   1747篇
  2011年   1649篇
  2010年   1062篇
  2009年   936篇
  2008年   1264篇
  2007年   1291篇
  2006年   1105篇
  2005年   1060篇
  2004年   1034篇
  2003年   937篇
  2002年   891篇
  2001年   204篇
  2000年   144篇
  1999年   153篇
  1998年   233篇
  1997年   149篇
  1996年   136篇
  1995年   126篇
  1994年   112篇
  1993年   101篇
  1992年   81篇
  1991年   66篇
  1990年   67篇
  1989年   62篇
  1988年   50篇
  1987年   58篇
  1986年   42篇
  1985年   46篇
  1984年   43篇
  1983年   62篇
  1982年   37篇
  1981年   32篇
  1980年   36篇
  1979年   28篇
  1978年   42篇
  1977年   35篇
  1976年   32篇
  1975年   25篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
81.
Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discussed the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change.  相似文献   
82.
The first committed step of lipid A biosynthesis in Gram-negative bacteria is catalyzed by the zinc-dependent hydrolase LpxC that removes an acetate from the nitrogen at the 2' '-position of UDP-3-O-acyl-N-acetylglucosamine. Recent structural characterization by both NMR and X-ray crystallography provides many important details about the active site environment of LpxC from Aquifex aeolicus, a heat-stable orthologue that displays 32% sequence identity to LpxC from Escherichia coli. The detailed reaction mechanism and specific roles of active site residues for LpxC from A. aeolicus are further analyzed here. The pH dependencies of k(cat)/K(M) and k(cat) for the deacetylation of the substrate UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc are both bell-shaped. The ascending acidic limb (pK(1)) was fitted to 6.1 +/- 0.2 for k(cat) and 5.7 +/- 0.2 for k(cat)/K(M). The descending basic limb (pK(2)) was fitted to 8.0 +/- 0.2 for k(cat) and 8.4 +/- 0.2 for k(cat)/K(M). The pH dependence of the E73A mutant exhibits loss of the acidic limb, and the mutant retains only 0.15% activity versus the wild type. The pH dependencies of the other active site mutants H253A, K227A, H253A/K227A, and D234N remain bell-shaped, although their significantly lower activities (0.25%, 0.05%, 0.007%, and 0.57%, respectively) suggest that they contribute significantly to catalysis. Our cumulative data support a mechanism for LpxC wherein Glu73 serves as the general base for deprotonation and activation of the zinc-bound water.  相似文献   
83.
The paired antennal lobes are the first integration centers for odor information in the insect brain. In the sphinx moth Manduca sexta, like in other holometabolous insects, they are formed during metamorphosis. To further understand mechanisms involved in the formation of this particularly well investigated brain area, we performed a direct peptide profiling of a well defined cell group (the lateral cell group) of the antennal lobe throughout development by MALDI-TOF mass spectrometry. Although the majority of the about 100 obtained ion signals represent still unknown substances, this first peptidomic characterization of this cell group indicated the occurrence of 12 structurally known neuropeptides. Among these peptides are helicostatin 1, cydiastatins 2, 3, and 4, M. sexta-allatotropin (Mas-AT), M. sexta-FLRFamide (Mas-FLRFamide) I, II, and III, nonblocked Mas-FLRFamide I, and M. sexta-myoinhibitory peptides (Mas-MIPs) III, V, and VI. The identity of two of the allatostatins (cydiastatins 3 and 4) and Mas-AT were confirmed by tandem mass spectrometry (MALDI-TOF/TOF). During development of the antennal lobe, number and frequency of ion signals including those representing known peptides generally increased at the onset of glomeruli formation at pupal Stage P7/8, with cydiastatin 2, helicostatin 1, and Mas-MIP V being the exceptions. Cydiastatin 2 showed transient occurrence mainly during the period of glomerulus formation, helicostatin 1 was restricted to late pupae and adults, while Mas-MIP V occurred exclusively in adult antennal lobes. The power of the applied direct mass spectrometric profiling lies in the possibility of chemically identifying neuropeptides of a given cell population in a fast and reliable manner, at any developmental stage in single specimens. The identification of neuropeptides in the antennal lobes now allows to specifically address the function of these signaling molecules during the formation of the antennal lobe network.  相似文献   
84.
The guanylate-binding proteins (GBPs) form a group of interferon-gamma inducible GTP-binding proteins which belong to the family of dynamin-related proteins. Like other members of this family, human guanylate-binding protein 1 (hGBP1) shows nucleotide-dependent oligomerisation that stimulates the GTPase activity of the protein. A unique feature of the GBPs is their ability to hydrolyse GTP to GDP and GMP. In order to elucidate the relationship between these findings, we designed point mutants in the phosphate-binding loop (P-loop) as well as in the switch I and switch II regions of the protein based on the crystal structure of hGBP1. These mutant proteins were analysed for their interaction with guanine nucleotides labeled with a fluorescence dye and for their ability to hydrolyse GTP in a cooperative manner. We identified mutations of amino acid residues that decrease GTPase activity by orders of magnitude a part of which are conserved in GTP-binding proteins. In addition, mutants in the P-loop were characterized that strongly impair binding of nucleotide. In consequence, together with altered GTPase activity and given cellular nucleotide concentrations this results in hGBP1 mutants prevailingly resting in the nucleotide-free (K51A and S52N) or the GTP bound form (R48A), respectively. Using size-exclusion chromatography and analytical ultracentrifugation we addressed the impact on protein oligomerisation. In summary, mutants of hGBP1 were identified and biochemically characterized providing hGBP1 locked in defined states in order to investigate their functional role in future cell biology studies.  相似文献   
85.
SMN-mediated assembly of RNPs: a complex story   总被引:18,自引:0,他引:18  
Although many RNA-protein complexes or ribonucleoproteins (RNPs) assemble spontaneously in vitro, little is known about how they form in the environment of a living cell. Insight into RNP assembly has come unexpectedly from functional analyses of the survival motor neuron (SMN) protein, a gene product that is affected in the neuromuscular disease spinal muscular atrophy. These studies show that the assembly of spliceosomal U-rich small nuclear RNPs in vivo depends on the activity of two large protein complexes, one of which contains the SMN protein. These complexes might also facilitate the assembly of other cellular RNPs.  相似文献   
86.
Formation of bacterial biofilms at solid–liquid interfaces creates numerous problems in biomedical sciences. Conventional sterilization and decontamination methods are not suitable for new and more sophisticated biomaterials. In this paper, the efficiency and effectiveness of gas discharges in the inactivation and removal of biofilms on biomaterials were studied. It was found that although discharge oxygen, nitrogen and argon all demonstrated excellent antibacterial and antibiofilm activity, gases with distinct chemical/physical properties underwent different mechanisms of action. Discharge oxygen- and nitrogen-mediated decontamination was associated with strong etching effects, which can cause live bacteria to relocate thus spreading contamination. On the contrary, although discharge argon at low powers maintained excellent antibacterial ability, it had negligible etching effects. Based on these results, an effective decontamination approach using discharge argon was established in which bacteria and biofilms were killed in situ and then removed from the contaminated biomaterials. This novel procedure is applicable for a wide range of biomaterials and biomedical devices in an in vivo and clinical setting.  相似文献   
87.
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.  相似文献   
88.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are loop-shaped peptidic hormones that have multiple actions on body fluid homeostasis. Their physiological effects are mediated through the activation of their receptor, natriuretic peptide receptor A (NPRA). This receptor is a member of the membrane guanylyl cyclase family and catalyzes cyclic guanosine monophosphate (cGMP) production following its activation. To map the binding site of human NPRA, we applied the methionine proximity assay method to this receptor. We photolabeled NPRA mutants, presenting a single methionine in the binding domain of the receptor, and used benzoylphenylalanine- (Bpa-) substituted peptides at positions 0, 3, 18, 26, and 28 of the ligand. We identified that the N-terminus of the peptide is interacting with the region between Asp(177) and Val(183) of the receptor. Arg(3) is interacting in the vicinity of Phe(172). Leu(18) binds close to Val(116). Phe(26) binds in the vicinity of His(195), and the C-terminal Tyr(28) is located close to Met(173). We next proceeded with photolabeling of a dual Bpa-substituted peptide and showed that the N-terminus and Leu(18) interact with opposite receptor subunits. On the basis of our results, a molecular model of peptide-bound NPRA was developed by homology modeling with the C-type natriuretic peptide- (CNP-) bound natriuretic peptide receptor C (NPRC) crystal structure. The model has been validated by molecular dynamics simulations. Our work provides a rational basis for interpreting and predicting natriuretic peptide binding to the human NPRA.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号