首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20006篇
  免费   1654篇
  国内免费   5篇
  21665篇
  2023年   88篇
  2022年   232篇
  2021年   432篇
  2020年   233篇
  2019年   306篇
  2018年   423篇
  2017年   353篇
  2016年   636篇
  2015年   1030篇
  2014年   1169篇
  2013年   1409篇
  2012年   1747篇
  2011年   1649篇
  2010年   1062篇
  2009年   936篇
  2008年   1264篇
  2007年   1291篇
  2006年   1105篇
  2005年   1060篇
  2004年   1034篇
  2003年   937篇
  2002年   891篇
  2001年   203篇
  2000年   144篇
  1999年   153篇
  1998年   233篇
  1997年   149篇
  1996年   137篇
  1995年   126篇
  1994年   112篇
  1993年   101篇
  1992年   80篇
  1991年   64篇
  1990年   67篇
  1989年   60篇
  1988年   50篇
  1987年   55篇
  1986年   42篇
  1985年   46篇
  1984年   43篇
  1983年   62篇
  1982年   37篇
  1981年   32篇
  1980年   36篇
  1979年   28篇
  1978年   42篇
  1977年   35篇
  1976年   32篇
  1975年   25篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Therapeutic oligonucleotides including siRNA and immunostimulatory ligands of Toll-like receptors (TLR) or RIG-I like helicases (RLH) are a promising novel class of drugs. They are in clinical development for a broad spectrum of applications, e.g. as adjuvants in vaccines and for the immunotherapy of cancer. Species-specific immune activation leading to cytokine release is characteristic for therapeutic oligonucleotides either as an unwanted side effect or intended pharmacology. Reliable in vitro tests designed for therapeutic oligonucleotides are therefore urgently needed in order to predict clinical efficacy and to prevent unexpected harmful effects in clinical development. To serve this purpose, we here established a human whole blood assay (WBA) that is fast and easy to perform. Its response to synthetic TLR ligands (R848: TLR7/8, LPS: TLR4) was on a comparable threshold to the more time consuming peripheral blood mononuclear cell (PBMC) based assay. By contrast, the type I IFN profile provoked by intravenous CpG-DNA (TLR9 ligand) in humans in vivo was more precisely replicated in the WBA than in stimulated PBMC. Since Heparin and EDTA, but not Hirudin, displaced oligonucleotides from their delivery agent, only Hirudin qualified as the anticoagulant to be used in the WBA. The Hirudin WBA exhibited a similar capacity as the PBMC assay to distinguish between TLR7-activating and modified non-stimulatory siRNA sequences. RNA-based immunoactivating TLR7/8- and RIG-I-ligands induced substantial amounts of IFN-α in the Hirudin-WBA dependent on delivery agent used. In conclusion, we present a human Hirudin WBA to determine therapeutic oligonucleotide-induced cytokine release during preclinical development that can readily be performed and offers a close reflection of human cytokine response in vivo.  相似文献   
102.
103.
104.
Cell resistance to low doses of paclitaxel (Taxol) involves a modulation of microtubule (MT) dynamics. We applied a proteomic approach based on 2-DE coupled with MS to identify changes in the MT environment of Taxol-resistant breast cancer cells. Having established a proteomic pattern of the microtubular proteins extracted from MDA-MB-231 cells, we verified by Western blotting that in resistant cells, α- and β-tubulins (more specifically the βIII and βIV isotypes) increased. Interestingly, four septins (SEPT2, 8, 9 and 11), which are GTPases involved in cytokinesis and in MT/actin cytoskeleton organization, were overexpressed and enriched in the MT environment of Taxol-resistant cells compared to their sensitive counterpart. Changes in the MT proteome of resistant cells also comprised increased kinesin-1 heavy chain expression and recruitment on MTs while dynein light chain-1 was downregulated. Modulation of motor protein recruitment around MTs might reflect their important role in controlling MT dynamics via the organization of signaling pathways. The identification of proteins previously unknown to be linked to taxane-resistance could also be valuable to identify new biological markers of resistance.  相似文献   
105.
Zearalenone (ZON) is a potent estrogenic mycotoxin produced by several Fusarium species most frequently on maize and therefore can be found in food and animal feed. Since animal production performance is negatively affected by the presence of ZON, its detoxification in contaminated plant material or by-products of bioethanol production would be advantageous. Microbial biotransformation into nontoxic metabolites is one promising approach. In this study the main transformation product of ZON formed by the yeast Trichosporon mycotoxinivorans was identified and characterized by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and LC-diode array detector (DAD) analysis. The metabolite, named ZOM-1, was purified, and its molecular formula, C18H24O7, was established by time of flight MS (TOF MS) from the ions observed at m/z 351.1445 [M-H] and at m/z 375.1416 [M+Na]+. Employing nuclear magnetic resonance (NMR) spectroscopy, the novel ZON metabolite was finally identified as (5S)-5-({2,4-dihydroxy-6-[(1E)-5-hydroxypent-1-en-1-yl]benzoyl}oxy)hexanoic acid. The structure of ZOM-1 is characterized by an opening of the macrocyclic ring of ZON at the ketone group at C6′. ZOM-1 did not show estrogenic activity in a sensitive yeast bioassay, even at a concentration 1,000-fold higher than that of ZON and did not interact with the human estrogen receptor in an in vitro competitive binding assay.Zearalenone (ZON) is the main member of a growing family of biologically important “resorcylic acid lactones” (RALs), which have been found in nature. ZON is produced by several Fusarium species, which colonize maize, barley, oat, wheat, and sorghum and tend to develop ZON during prolonged cool, wet growing and harvest seasons (38). Maize is the most frequently contaminated crop plant, and therefore, ZON can be found frequently in animal feeding stuff. Occurrence, toxicity, and metabolism data of ZON were summarized by the European Food Safety Authority (EFSA) (5) and in recent reviews (12, 38).The potent xenohormone ZON leads to hyperestrogenism symptoms and in extreme cases to infertility problems, especially in pigs (15). Ovarian changes in pigs have been noted with toxin levels as low as of 50 μg/kg in the diet (1). Ruminants are more tolerant to ZON ingestion; however, hyperestrogenic syndrome, including restlessness, diarrhea, infertility, decreased milk yields, and abortion, have been well documented with cattle and sheep (4, 29).Because widespread ZON contamination in feed can occur in problematic years, efficient ways to detoxify are desirable. The transformation of mycotoxins to nontoxic metabolites by pure cultures of microorganisms or by cell-free enzyme preparations (3) is an attractive possibility. Microbial metabolization of ZON to alpha-ZOL and beta-ZOL cannot be regarded as detoxification, because both ZOL products are still estrogenic (14). Also, formation of ZON-glucosides and -diglucosides (8, 17) and ZON-sulfate (7) cannot be considered true detoxification but rather formation of masked mycotoxins, because the conjugates may be hydrolyzed during digestion (11, 23), releasing ZON again (2).As the estrogenic activity of ZON and its derivates can be explained by its chemical structure, which resembles natural estrogens (20), it can be expected that cleavage of the lactone undecyl ring system of ZON results in permanent detoxification.El-Sharkawy and Abul-Hajj (9) were the first to report inactivation of ZON after opening of the lactone ring by Gliocladium roseum. This filamentous fungus was capable of metabolizing ZON in yields of 80 to 90%. Also Takahashi-Ando et al. (31) described the degradation reaction of ZON with Clonostachys rosea (synonym of G. roseum). A hydrolase (encoded by a gene designated ZHD101) cleaves the lactone ring, and as recently proved (37; unpublished data) by subsequent decarboxylation of the intermediate acid, the compound 1-(3,5-dihydroxyphenyl)-10′-hydroxy-1′E-undecene-6′-one is formed. In contrast to ZON and 17β-estradiol, which showed potent estrogenic activity, this cleavage product did not show any estrogenic activity in the human breast cancer MCF-7 cell proliferation assay (16). Further details, e.g., on the conditions of the maximum activity of ZHD101 and its exploitation in genetically modified grains, can be found in later published work of this research group (32, 33).Only a few authors reported the loss of estrogenicity in microbial metabolites of ZON, which are based on reactions other than cleavage of the lactone undecyl ring system. El-Sharkawy and Abul-Hajj demonstrated (10) that binding to rat uterine estrogen receptors requires a free 4-OH phenolic group (devoid of methylation or glycosylation). Loss of estrogenicity was, for instance, observed with 2,4-dimethoxy-ZON, one of the metabolites produced by Cunninghamella bainieri ATCC 9244B. Nevertheless, this rule cannot be generalized, as 8′-hydroxyzearalenone formed by Streptomyces rimosus NRRL 2234, despite having a free 4-phenolic hydroxyl group, did not bind to the estrogen receptor. Also, other authors reported that 8′-hydroxyzearalenone and 8′-epi-hydroxyzearalenone are nonestrogenic (13). However, so far, no practical application in feed or food detoxification has been found for the microorganisms producing these compounds.It has been shown previously that the yeast Trichosporon mycotoxinivorans has a very high capability to degrade both ochratoxin A (OTA) and ZON (22, 26, 27). When T. mycotoxinivorans is used as a feed additive preparation, microbial degradation of the mycotoxins is assumed to take place in the gastrointestinal tract of the animal after consumption of contaminated feed. The protective effect of T. mycotoxinivorans against OTA toxicity has already been shown with broiler chicken (24).In the present study we report the isolation, analytical characterization, and structure elucidation, as well as the evaluation, of the estrogenic activity of the main degradation product of ZON produced by T. mycotoxinivorans.  相似文献   
106.
Recently, it has been demonstrated that loops of the crystallizable fragment of IgG1 (IgG1-Fc) can be engineered to form antigen-binding sites. In this work C-terminal structural loops in the CH3 domains of homodimeric IgG1-Fc have been functionalized to form integrin-binding sites in order to probe the effect of engineering on structural integrity and thermal stability of IgG1-Fc as well as on binding to the ligands Protein A, CD16 and FcRn, respectively. The peptide sequence GCRGDCL - a disulfide-bridged cyclic heptapeptide that confers binding to human αvβ3 integrin was introduced into AB, CD and/or EF loops and single and double mutants were heterologously expressed in Pichia pastoris. Integrin binding of engineered IgG-Fc was tested using both binding to coated αvβ3 integrin in ELISA or to αvβ3-expressing K562 cells in FACS analysis. Additionally, blocking of αvβ3-mediated cell adhesion to vitronectin was investigated. The data presented in this report demonstrate that bioactive integrin-binding peptide(s) can be grafted on the C-terminal loops of IgG-Fc without impairing binding to effector molecules. Observed differences between the investigated variants in structural stability and integrin binding are discussed with respect to the known structure of IgG-Fc and its structural loops.  相似文献   
107.
108.
The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.  相似文献   
109.
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.  相似文献   
110.

Background

The aim of the study was to assess the chronic effects of combined phosphodiesterase 3/4 inhibitor tolafentrine, administered by inhalation, during monocrotaline-induced pulmonary arterial hypertension (PAH) in rats.

Methods

CD rats were given a single subcutaneous injection of monocrotaline to induce PAH. Four weeks after, rats were subjected to inhalation of tolafentrine or sham nebulization in an unrestrained, whole body aerosol exposure system. In these animals (i) the acute pulmonary vasodilatory efficacy of inhaled tolafentrine (ii) the anti-remodeling effect of long-term inhalation of tolafentrine (iii) the effects of tolafentrine on the expression profile of 96 genes encoding cell adhesion and extracellular matrix regulation were examined. In addition, the inhibitory effect of tolafentrine on ex vivo isolated pulmonary artery SMC cell migration was also investigated.

Results

Monocrotaline injection provoked severe PAH (right ventricular systolic pressure increased from 25.9 ± 4.0 to 68.9 ± 3.2 after 4 weeks and 74.9 ± 5.1 mmHg after 6 weeks), cardiac output depression and right heart hypertrophy. The media thickness of the pulmonary arteries and the proportion of muscularization of small precapillary resistance vessels increased dramatically, and the migratory response of ex-vivo isolated pulmonary artery smooth muscle cells (PASMC) was increased. Micro-arrays and subsequent confirmation with real time PCR demonstrated upregulation of several extracellular matrix regulation and adhesion genes, such as matrixmetalloproteases (MMP) 2, 8, 9, 10, 11, 12, 20, Icam, Itgax, Plat and serpinb2. When chronically nebulized from day 28 to 42 (12 daily aerosol maneuvers), after full establishment of severe pulmonary hypertension, tolafentrine reversed about 60% of all hemodynamic abnormalities, right heart hypertrophy and monocrotaline-induced structural lung vascular changes, including the proportion of pulmonary artery muscularization. The upregulation of extracellular matrix regulation and adhesion genes was reduced by nearly 80% by inhalation of the tolafentrine. When assessed in vitro, tolafentrine blocked the enhanced PASMC migratory response.

Conclusion

In conclusion, we demonstrate for the first time that inhalation of combined PDE3/4 inhibitor reverses pulmonary hypertension fully developed in response to monocrotaline in rats. This "reverse-remodeling" effect includes structural changes in the lung vascular wall and key molecular pathways of matrix regulation, concomitant with 60% normalization of hemodynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号