全文获取类型
收费全文 | 20008篇 |
免费 | 1650篇 |
国内免费 | 5篇 |
专业分类
21663篇 |
出版年
2023年 | 88篇 |
2022年 | 232篇 |
2021年 | 432篇 |
2020年 | 233篇 |
2019年 | 306篇 |
2018年 | 423篇 |
2017年 | 353篇 |
2016年 | 636篇 |
2015年 | 1030篇 |
2014年 | 1169篇 |
2013年 | 1409篇 |
2012年 | 1747篇 |
2011年 | 1649篇 |
2010年 | 1062篇 |
2009年 | 936篇 |
2008年 | 1264篇 |
2007年 | 1291篇 |
2006年 | 1105篇 |
2005年 | 1060篇 |
2004年 | 1034篇 |
2003年 | 937篇 |
2002年 | 891篇 |
2001年 | 203篇 |
2000年 | 144篇 |
1999年 | 153篇 |
1998年 | 233篇 |
1997年 | 149篇 |
1996年 | 136篇 |
1995年 | 125篇 |
1994年 | 112篇 |
1993年 | 101篇 |
1992年 | 80篇 |
1991年 | 64篇 |
1990年 | 67篇 |
1989年 | 60篇 |
1988年 | 50篇 |
1987年 | 55篇 |
1986年 | 42篇 |
1985年 | 46篇 |
1984年 | 43篇 |
1983年 | 62篇 |
1982年 | 37篇 |
1981年 | 32篇 |
1980年 | 36篇 |
1979年 | 28篇 |
1978年 | 42篇 |
1977年 | 35篇 |
1976年 | 32篇 |
1975年 | 25篇 |
1974年 | 27篇 |
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
101.
In higher plants, the PII protein is a nuclear-encoded plastid protein that regulates the activity of a key enzyme of arginine biosynthesis. We have previously observed that Arabidopsis PII mutants are more sensitive to nitrite toxicity. Using intact chloroplasts isolated from Arabidopsis leaves and (15)N-labelled nitrite we show that a light-dependent nitrite uptake into chloroplasts is increased in PII knock-out mutants when compared to the wild-type. This leads to a higher incorporation of (15)N into ammonium and amino acids in the mutant chloroplasts. However, the uptake differences do not depend on GS/GOGAT activities. Our observations suggest that PII is involved in the regulation of nitrite uptake into higher plant chloroplasts. 相似文献
102.
Guido C. Paesen Christian Siebold Mark L. Dallas Karl Harlos Miles A. Nunn Robert M. Esnouf 《Journal of molecular biology》2009,389(4):734-2908
Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 Å resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by β-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the ”Kunitz head” by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a β-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding. 相似文献
103.
104.
105.
Galinier A Carrière A Fernandez Y Carpéné C André M Caspar-Bauguil S Thouvenot JP Périquet B Pénicaud L Casteilla L 《The Journal of biological chemistry》2006,281(18):12682-12687
The role of inflammation and oxidative stress in the development of obesity and associated metabolic disorders is under debate. We investigated the redox metabolism in a non-diabetic obesity model, i.e. 11-week-old obese Zucker rats. Antioxidant enzyme activities, lipophilic antioxidant (alpha-tocopherol, coenzymes Q) and hydrophilic antioxidant (glutathione, vitamin C) contents and their redox state (% oxidized form), were studied in inguinal white fat and compared with blood and liver. The adipose tissues of obese animals showed a specific higher content of hydrophilic molecules in a lower redox state than those of lean animals, which were associated with lower lipophilic molecule content and lipid peroxidation. Conversely and as expected, glutathione content decreased and its redox state increased in adipose tissues of rats subjected to lipopolysaccharide-induced systemic oxidative stress. In these in vivo models, oxidative stress and obesity thus had opposite effects on adipose tissue redox state. Moreover, the increase in glutathione content and the decrease of its redox state by antioxidant treatment promoted in vitro the accumulation of triglycerides in preadipocytes. Taken together and contrary to the emergent view, our results suggest that obesity is associated with an intracellular reduced redox state that promotes on its own the development of a deleterious proadipogenic process. 相似文献
106.
107.
Influence of hydrological connectivity of riverine wetlands on nitrogen removal via denitrification 总被引:1,自引:0,他引:1
E. Racchetti Marco Bartoli E. Soana D. Longhi R. R. Christian M. Pinardi P. Viaroli 《Biogeochemistry》2011,103(1-3):335-354
Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from <5 to 1,133 μM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35–1,888 μmol N m?2 h?1) were up to two orders of magnitude higher than rates measured in isolated wetlands (2–231 μmol N m?2 h?1), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9–1,888 μmol N m?2 h?1) than in winter (2–365 μmol N m?2 h?1). Denitrification supported by water column nitrate (DW) accounted for 60–100% of total denitrification (Dtot); denitrification coupled to nitrification (DN) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification. 相似文献
108.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are loop-shaped peptidic hormones that have multiple actions on body fluid homeostasis. Their physiological effects are mediated through the activation of their receptor, natriuretic peptide receptor A (NPRA). This receptor is a member of the membrane guanylyl cyclase family and catalyzes cyclic guanosine monophosphate (cGMP) production following its activation. To map the binding site of human NPRA, we applied the methionine proximity assay method to this receptor. We photolabeled NPRA mutants, presenting a single methionine in the binding domain of the receptor, and used benzoylphenylalanine- (Bpa-) substituted peptides at positions 0, 3, 18, 26, and 28 of the ligand. We identified that the N-terminus of the peptide is interacting with the region between Asp(177) and Val(183) of the receptor. Arg(3) is interacting in the vicinity of Phe(172). Leu(18) binds close to Val(116). Phe(26) binds in the vicinity of His(195), and the C-terminal Tyr(28) is located close to Met(173). We next proceeded with photolabeling of a dual Bpa-substituted peptide and showed that the N-terminus and Leu(18) interact with opposite receptor subunits. On the basis of our results, a molecular model of peptide-bound NPRA was developed by homology modeling with the C-type natriuretic peptide- (CNP-) bound natriuretic peptide receptor C (NPRC) crystal structure. The model has been validated by molecular dynamics simulations. Our work provides a rational basis for interpreting and predicting natriuretic peptide binding to the human NPRA. 相似文献
109.