首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24888篇
  免费   2327篇
  国内免费   6篇
  2023年   88篇
  2022年   228篇
  2021年   497篇
  2020年   279篇
  2019年   343篇
  2018年   492篇
  2017年   399篇
  2016年   711篇
  2015年   1154篇
  2014年   1323篇
  2013年   1581篇
  2012年   1988篇
  2011年   1851篇
  2010年   1212篇
  2009年   1088篇
  2008年   1466篇
  2007年   1493篇
  2006年   1308篇
  2005年   1268篇
  2004年   1207篇
  2003年   1101篇
  2002年   1068篇
  2001年   402篇
  2000年   310篇
  1999年   291篇
  1998年   309篇
  1997年   219篇
  1996年   190篇
  1995年   185篇
  1994年   167篇
  1993年   156篇
  1992年   221篇
  1991年   192篇
  1990年   185篇
  1989年   168篇
  1988年   141篇
  1987年   155篇
  1986年   115篇
  1985年   114篇
  1984年   120篇
  1983年   133篇
  1982年   107篇
  1981年   74篇
  1980年   74篇
  1979年   97篇
  1978年   82篇
  1977年   88篇
  1976年   74篇
  1975年   84篇
  1973年   68篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome‐scale studies to characterize both model and non‐model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome‐wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site‐associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms—enabling the exploration of diverse evolutionary and conservation questions.  相似文献   
992.
993.
Cobamides (Cbas) are essential cofactors of reductive dehalogenases (RDases) in organohalide-respiring bacteria (OHRB). Changes in the Cba structure can influence RDase function. Here, we report on the cofactor versatility or selectivity of Desulfitobacterium RDases produced either in the native organism or heterologously. The susceptibility of Desulfitobacterium hafniense strain DCB-2 to guided Cba biosynthesis (i.e. incorporation of exogenous Cba lower ligand base precursors) was analysed. Exogenous benzimidazoles, azabenzimidazoles and 4,5-dimethylimidazole were incorporated by the organism into Cbas. When the type of Cba changed, no effect on the turnover rate of the 3-chloro-4-hydroxy-phenylacetate-converting enzyme RdhA6 and the 3,5-dichlorophenol-dehalogenating enzyme RdhA3 was observed. The impact of the amendment of Cba lower ligand precursors on RDase function was also investigated in Shimwellia blattae, the Cba producer used for the heterologous production of Desulfitobacterium RDases. The recombinant tetrachloroethene RDase (PceAY51) appeared to be non-selective towards different Cbas. However, the functional production of the 1,2-dichloroethane-dihaloeliminating enzyme (DcaA) of Desulfitobacterium dichloroeliminans was completely prevented in cells producing 5,6-dimethylbenzimidazolyl-Cba, but substantially enhanced in cells that incorporated 5-methoxybenzimidazole into the Cba cofactor. The results of the study indicate the utilization of a range of different Cbas by Desulfitobacterium RDases with selected representatives apparently preferring distinct Cbas.  相似文献   
994.
Separation of the heterogeneous lignin macromolecule in fractions with increased homogeneity, as well as different structural (molar mass) and functional (hydroxy groups, ‐OH) features is important in terms of its use as a chemical building block. For this purpose, three thermal separation techniques were investigated and compared: solvent extraction, successive precipitation and ultrafiltration. One important issue in this context is the utilization of organic solvents with low boiling points to ensure a simple and efficient recovery. In addition to a softwood Kraft lignin (Indulin AT) as reference lignin, two sulfur‐free Organosolv lignins from short rotation coppice (“poplar with bark”) and from the energy grass Miscanthus × gigantheus were investigated. The lignins were separated into low, medium and high molecular weight fractions. Due to the different initial structural features and the associated varying solubility properties in such lignins, different organic solvents were needed for dissolution and precipitation of the individual lignin fractions. The polarity of the used solvent is one key factor regarding the yield of the soluble fraction and the success of molecular sorting into low, medium, and high molecular weight. Further structural features, for example the aliphatic OH‐group content increased with rising molecular weight of poplar, miscanthus, and Kraft lignin from minimum 0.72, 0.3, and 1.6 mmol/g to maximum 2.4, 1.6, and 2.8 mmol/g, respectively. The number of phenolic OH‐groups decreased from maximum 3.8, 4.3, and 4.2 to minimum 1.4, 2.7, and 2.9, respectively. The presented work illustrate options regarding the molecular sorting of several lignin types with three thermal techniques into fractions differing in key properties (yield, molecular weight, polydispersity, functional groups) for material applications.  相似文献   
995.
Short rotation plantations are often considered as holding vast potentials for future global bioenergy supply. In contrast to raising biomass harvests in forests, purpose‐grown biomass does not interfere with forest carbon (C) stocks. Provided that agricultural land can be diverted from food and feed production without impairing food security, energy plantations on current agricultural land appear as a beneficial option in terms of renewable, climate‐friendly energy supply. However, instead of supporting energy plantations, land could also be devoted to natural succession. It then acts as a long‐term C sink which also results in C benefits. We here compare the sink strength of natural succession on arable land with the C saving effects of bioenergy from plantations. Using geographically explicit data on global cropland distribution among climate and ecological zones, regionally specific C accumulation rates are calculated with IPCC default methods and values. C savings from bioenergy are given for a range of displacement factors (DFs), acknowledging the varying efficiency of bioenergy routes and technologies in fossil fuel displacement. A uniform spatial pattern is assumed for succession and bioenergy plantations, and the considered timeframes range from 20 to 100 years. For many parameter settings—in particular, longer timeframes and high DFs—bioenergy yields higher cumulative C savings than natural succession. Still, if woody biomass displaces liquid transport fuels or natural gas‐based electricity generation, natural succession is competitive or even superior for timeframes of 20–50 years. This finding has strong implications with climate and environmental policies: Freeing land for natural succession is a worthwhile low‐cost natural climate solution that has many co‐benefits for biodiversity and other ecosystem services. A considerable risk, however, is C stock losses (i.e., emissions) due to disturbances or land conversion at a later time.  相似文献   
996.
Wildfire refugia (unburnt patches within large wildfires) are important for the persistence of fire‐sensitive species across forested landscapes globally. A key challenge is to identify the factors that determine the distribution of fire refugia across space and time. In particular, determining the relative influence of climatic and landscape factors is important in order to understand likely changes in the distribution of wildfire refugia under future climates. Here, we examine the relative effect of weather (i.e. fire weather, drought severity) and landscape features (i.e. topography, fuel age, vegetation type) on the occurrence of fire refugia across 26 large wildfires in south‐eastern Australia. Fire weather and drought severity were the primary drivers of the occurrence of fire refugia, moderating the effect of landscape attributes. Unburnt patches rarely occurred under ‘severe’ fire weather, irrespective of drought severity, topography, fuels or vegetation community. The influence of drought severity and landscape factors played out most strongly under ‘moderate’ fire weather. In mesic forests, fire refugia were linked to variables that affect fuel moisture, whereby the occurrence of unburnt patches decreased with increasing drought conditions and were associated with more mesic topographic locations (i.e. gullies, pole‐facing aspects) and vegetation communities (i.e. closed‐forest). In dry forest, the occurrence of refugia was responsive to fuel age, being associated with recently burnt areas (<5 years since fire). Overall, these results show that increased severity of fire weather and increased drought conditions, both predicted under future climate scenarios, are likely to lead to a reduction of wildfire refugia across forests of southern Australia. Protection of topographic areas able to provide long‐term fire refugia will be an important step towards maintaining the ecological integrity of forests under future climate change.  相似文献   
997.
998.
The endosymbiotic relationship between cnidarians and photosynthetic dinoflagellate algae provides the foundation of coral reef ecosystems. This essential interaction is globally threatened by anthropogenic disturbance. As such, it is important to understand the molecular mechanisms underpinning the cnidarian–algal association. Here we investigated phosphorylation‐mediated protein signalling as a mechanism of regulation of the cnidarian–algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Mass spectrometry‐based phosphoproteomics using data‐independent acquisition allowed consistent quantification of over 3,000 phosphopeptides totalling more than 1,600 phosphoproteins across aposymbiotic (symbiont‐free) and symbiotic anemones. Comparison of the symbiotic states showed distinct phosphoproteomic profiles attributable to the differential phosphorylation of 539 proteins that cover a broad range of functions, from receptors to structural and signal transduction proteins. A subsequent pathway enrichment analysis identified the processes of “protein digestion and absorption,” “carbohydrate metabolism,” and “protein folding, sorting and degradation,” and highlighted differential phosphorylation of the “phospholipase D signalling pathway” and “protein processing in the endoplasmic reticulum.” Targeted phosphorylation of the phospholipase D signalling pathway suggests control of glutamate vesicle trafficking across symbiotic compartments, and phosphorylation of the endoplasmic reticulum machinery suggests recycling of symbiosome‐associated proteins. Our study shows for the first time that changes in the phosphorylation status of proteins between aposymbiotic and symbiotic Aiptasia anemones may play a role in the regulation of the cnidarian–algal symbiosis. This is the first phosphoproteomic study of a cnidarian–algal symbiotic association as well as the first application of quantification by data‐independent acquisition in the coral field.  相似文献   
999.
The last three decades have seen a dwindling number of novel antibiotic classes approved for clinical use and a concurrent increase in levels of antibiotic resistance, necessitating alternative methods to combat the rise of multi-drug resistant bacteria. A promising strategy employs antibiotic adjuvants, non-toxic molecules that disarm antibiotic resistance. When co-dosed with antibiotics, these compounds restore antibiotic efficacy in drug-resistant strains. Herein we identify derivatives of tryptamine, a ubiquitous biochemical scaffold containing an indole ring system, capable of disarming colistin resistance in the Gram-negative bacterial pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli while having no inherent bacterial toxicity. Resistance was overcome in strains carrying endogenous chromosomally-encoded colistin resistance machinery, as well as resistance conferred by the mobile colistin resistance-1 (mcr-1) plasmid-borne gene. These compounds restore a colistin minimum inhibitory concentration (MIC) below the Clinical & Laboratory Sciences Institute (CLSI) breakpoint in all resistant strains.  相似文献   
1000.
Inspired by marine compounds the derivatization of the natural pyrrolo[2,3-d]pyrimidine lead scaffold led to a series of novel compounds targeting the histamine H3 receptor. The focus was set on improved binding towards the receptor and to establish an initial structure-activity relationship for this compound class based on the lead structure (compound V, Ki value of 126 nM). As highest binding affinities were found with 1,4-bipiperidines as basic part of the ligands, further optimization was focused on 4-([1,4′-bipiperidin]-1′-yl)-pyrrolo[2,3-d]pyrimidines. Related pyrrolo[2,3-d]pyrimidines that were isolated from marine sponges like 4-amino-5-bromopyrrolo[2,3-d]pyrimidine (compound III), showed variations in halogenation pattern, though in a next step the impact of halogenation at 2-position was evaluated. The chloro variations did not improve the affinity compared to the dehalogenated compounds. However, the simultaneous introduction of lipophilic cores with electron-withdrawing substitution patterns in 7-position and dehalogenation at 2-position (11b, 12b) resulted in compounds with significantly higher binding affinities (Ki values of 7 nM and 6 nM, respectively) than the initial lead structure compound V. The presented structures allow for a reasonable structure-activity relationship of pyrrolo[2,3-d]pyrimidines as histamine H3 receptor ligands and yielded novel lead structures within the natural compound library against this target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号