首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2472篇
  免费   308篇
  国内免费   5篇
  2785篇
  2021年   29篇
  2020年   22篇
  2019年   24篇
  2018年   25篇
  2017年   29篇
  2016年   43篇
  2015年   81篇
  2014年   105篇
  2013年   109篇
  2012年   120篇
  2011年   134篇
  2010年   87篇
  2009年   73篇
  2008年   99篇
  2007年   90篇
  2006年   82篇
  2005年   96篇
  2004年   87篇
  2003年   100篇
  2002年   82篇
  2001年   95篇
  2000年   70篇
  1999年   73篇
  1998年   44篇
  1997年   37篇
  1996年   34篇
  1995年   38篇
  1994年   32篇
  1993年   31篇
  1992年   61篇
  1991年   43篇
  1990年   56篇
  1989年   50篇
  1988年   44篇
  1987年   40篇
  1986年   37篇
  1985年   41篇
  1984年   31篇
  1983年   40篇
  1982年   19篇
  1981年   25篇
  1980年   18篇
  1979年   28篇
  1978年   22篇
  1977年   22篇
  1976年   22篇
  1974年   22篇
  1972年   23篇
  1971年   15篇
  1965年   14篇
排序方式: 共有2785条查询结果,搜索用时 20 毫秒
101.

Objective

This study systematically investigated the effect of chronic mild stress and response to antidepressant treatment in the lateral habenula at the whole genome level.

Methods

Rat whole genome expression chips (Affymetrix) were used to detect gene expression regulations in the lateral habenula of rats subjected to chronic mild stress (mild stressors exchanged twice a day for 8 weeks). Some rats received antidepressant treatment during fifth to eights week of CMS. The lateral habenula gene expression profile was studied through the gene ontology and signal pathway analyses using bioinformatics. Real-time quantitative polymerase chain reaction (RT-PCR) was used to verify the microarray results and determine the expression of the Fcrla, Eif3k, Sec3l1, Ubr5, Abca8a, Ankrd49, Cyp2j10, Frs3, Syn2, and Znf503 genes in the lateral habenula tissue.

Results

In particular we found that stress and antidepressant treatment affected intracellular cascades like growth factor receptor signaling, G-protein-coupled receptor signaling, and Wnt signaling – processes involved in the neuroplastic changes observed during the progression of depression and antidepressant treatment.

Conclusion

The present study suggests an important role of the lateral habenula in the development of depression-like conditions and correlates to previous studies demonstrating a significant role of the lateral habenula in depressive-like conditions and antidepressant treatment.  相似文献   
102.
ClpS2 is a small protein under development as a probe for selectively recognizing N-terminal amino acids of N-degron peptide fragments. To understand the structural basis of ClpS2 specificity for an N-terminal amino acid, all atom molecular dynamics (MD) simulations were conducted using the sequence of a bench-stable mutant of ClpS2, called PROSS. We predicted that a single amino acid leucine to asparagine substitution would switch the specificity of PROSS ClpS2 to an N-terminal tyrosine over the preferred phenylalanine. Experimental validation of the mutant using a fluorescent yeast-display assay showed an increase in tyrosine binding over phenylalanine, in support of the proposed hypothesis.  相似文献   
103.
Naturally occurring repetitive DNA sequences can adopt alternative (i.e. non-B) DNA secondary structures, and often co-localize with chromosomal breakpoint “hotspots,” implicating non-B DNA in translocation-related cancer etiology. We have found that sequences capable of adopting H-DNA and Z-DNA structures are intrinsically mutagenic in mammals. For example, an endogenous H-DNA-forming sequence from the human c-MYC promoter and a model Z-DNA-forming CpG repeat induced genetic instability in mammalian cells, largely in the form of deletions resulting from DNA double-strand breaks (Wang & Vasquez, 2004; Wang et al., 2006). Characterization of the mutants revealed microhomologies at the breakpoints, consistent with a microhomology-mediated end-joining repair of the double-strand breaks (Kha et al., 2010). We have constructed transgenic mutation-reporter mice containing these human H-DNA- and Z-DNA-forming sequences to determine their effects on genomic instability in a chromosomal context in a living organism (Wang et al., 2008). Initial results suggest that both H-DNA- and Z-DNA-forming sequences induced genetic instability in mice, suggesting that these non-B DNA structures represent endogenous sources of genetic instability and may contribute to disease etiology and evolution. Our current studies are designed to determine the mechanisms of DNA structure-induced genetic instability in mammals; the roles of helicases, polymerases, and repair enzymes in H-DNA and Z-DNA-induced genetic instability will be discussed.  相似文献   
104.
105.
The pathophysiological process in amyloid disorders usually involves the transformation of a functional monomeric protein via potentially toxic oligomers into amyloid fibrils. The structure and properties of the intermediary oligomers have been difficult to study due to their instability and dynamic equilibrium with smaller and larger species. In hereditary cystatin C amyloid angiopathy, a cystatin C variant is deposited in arterial walls and cause brain hemorrhage in young adults. In the present investigation, we use redox experiments of monomeric cystatin C, stabilized against domain swapping by an intramolecular disulfide bond, to generate stable oligomers (dimers, trimers, tetramers, decamers, and high molecular weight oligomers). These oligomers were characterized concerning size by gel filtration, polyacrylamide gel electrophoresis, and mass spectrometry, shape by electron and atomic force microscopy, and, function by assays of their capacity to inhibit proteases. The results showed the oligomers to be highly ordered, domain-swapped assemblies of cystatin C and that the oligomers could not build larger oligomers, or fibrils, without domain swapping. The stabilized oligomers were used to induce antibody formation in rabbits. After immunosorption, using immobilized monomeric cystatin C, and elution from columns with immobilized cystatin C oligomers, oligomer-specific antibodies were obtained. These could be used to selectively remove cystatin C dimers from biological fluids containing both dimers and monomers.  相似文献   
106.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   
107.
Heterometallic [AgFe3S4] iron–sulfur clusters assembled in wild-type Pyrococcus furiosus ferredoxin and two variants, D14C and D14H, are characterized. The crystal structure of the [AgFe3S4] D14C variant shows that the silver(I) ion is indeed part of the cluster and is coordinated to the thiolate group of residue 14. Cyclic voltammetry shows one redox pair with a reduction potential of +220 mV versus the standard hydrogen electrode which is assigned to the [AgFe3S4]2+/+ couple. The oxidized form of the [AgFe3S4] D14C variant is stable in the presence of dioxygen, whereas the oxidized forms of the [AgFe3S4] wild type and D14H variants convert to the [Fe3S4] ferredoxin form. The monovalent d 10 silver(I) ion stabilizes the [Fe3S4]+/0 cluster fragment, as opposed to divalent d 10 metal ions, resulting in more than 0.4 V difference in reduction potentials between the silver(I) and, e.g., zinc(II) heterometallic [MFe3S4] ferredoxins. The trend in reduction potentials for the variants containing the [AgFe3S4] cluster is wild type ≤ D14C < D14H and shows the same trend as reported for the variants containing the [Fe3S4] cluster, but is different from the D14C < D14H < wild type trend reported for the [Fe4S4] ferredoxin. The similarity in the reduction potential trend for the variants containing the heterometallic [AgFe3S4] cluster and the [Fe3S4] cluster can be rationalized in terms of the electrostatic influence of the residue 14 side chains, rather than the dissociation constant of this residue, as is the case for [Fe4S4] ferredoxins. The trends in reduction potentials are in line with there being no electronic coupling between the silver(I) ion and the Fe3S4 fragment.  相似文献   
108.
Highlights? SorLA is a sorting receptor for GDNF and its signaling receptors GFRa1 and RET ? The SorLA/GFRa1 complex targets GDNF for lysosomal degradation, while GFRa1 is recycled ? SorLA/GFRa1 targets RET for endocytosis and influences GDNF-induced neurotrophic effects ? SorLA knockout mice display altered dopaminergic function and an ADHD-like phenotype  相似文献   
109.

Objective:

To investigate the prevalence of overweight and obesity among white and American Indian children in a predominantly rural state.

Design and Methods:

Using a repeated, cross‐sectional design of school children's height and weight, the study sample included 361,352 measures of children who were 5.0–19.9 years, attending school across 13 academic calendar years. Trained staff measured height, weight, and recorded gender, age, and race. Data were voluntarily reported to the State Department of Health.

Results:

American Indian children consistently had higher rates of overweight and obesity compared to white children. Across the years, 16.3% of white students were overweight, whereas 19.3% of American Indian students were overweight. In addition, 14.5% of white children were obese and 25.9% of American Indian children were obese. Examining by rural versus urban schools, prevalence of overweight had been increasing among white male and female students and American Indian female students living in rural areas. Obesity is also increasing among rural white females and male and female American Indian children.

Conclusions:

The findings here suggest that although American Indian children are at higher risk, in general, compared to white children, rural populations in general are experiencing increases in childhood overweight and obesity. Targeted rural interventions beginning at an early age are necessary to improve the health of rural children, especially in American Indian communities.  相似文献   
110.
BackgroundSmartphones are increasingly integrated into everyday life, but frequency of use has not yet been objectively measured and compared to demographics, health information, and in particular, sleep quality.AimsThe aim of this study was to characterize smartphone use by measuring screen-time directly, determine factors that are associated with increased screen-time, and to test the hypothesis that increased screen-time is associated with poor sleep.MethodsWe performed a cross-sectional analysis in a subset of 653 participants enrolled in the Health eHeart Study, an internet-based longitudinal cohort study open to any interested adult (≥ 18 years). Smartphone screen-time (the number of minutes in each hour the screen was on) was measured continuously via smartphone application. For each participant, total and average screen-time were computed over 30-day windows. Average screen-time specifically during self-reported bedtime hours and sleeping period was also computed. Demographics, medical information, and sleep habits (Pittsburgh Sleep Quality Index–PSQI) were obtained by survey. Linear regression was used to obtain effect estimates.ResultsTotal screen-time over 30 days was a median 38.4 hours (IQR 21.4 to 61.3) and average screen-time over 30 days was a median 3.7 minutes per hour (IQR 2.2 to 5.5). Younger age, self-reported race/ethnicity of Black and "Other" were associated with longer average screen-time after adjustment for potential confounders. Longer average screen-time was associated with shorter sleep duration and worse sleep-efficiency. Longer average screen-times during bedtime and the sleeping period were associated with poor sleep quality, decreased sleep efficiency, and longer sleep onset latency.ConclusionsThese findings on actual smartphone screen-time build upon prior work based on self-report and confirm that adults spend a substantial amount of time using their smartphones. Screen-time differs across age and race, but is similar across socio-economic strata suggesting that cultural factors may drive smartphone use. Screen-time is associated with poor sleep. These findings cannot support conclusions on causation. Effect-cause remains a possibility: poor sleep may lead to increased screen-time. However, exposure to smartphone screens, particularly around bedtime, may negatively impact sleep.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号