首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1651篇
  免费   143篇
  国内免费   1篇
  1795篇
  2023年   6篇
  2022年   15篇
  2021年   21篇
  2020年   17篇
  2019年   20篇
  2018年   38篇
  2017年   26篇
  2016年   48篇
  2015年   78篇
  2014年   77篇
  2013年   98篇
  2012年   127篇
  2011年   127篇
  2010年   76篇
  2009年   69篇
  2008年   111篇
  2007年   122篇
  2006年   89篇
  2005年   73篇
  2004年   87篇
  2003年   88篇
  2002年   77篇
  2001年   24篇
  2000年   19篇
  1999年   22篇
  1998年   16篇
  1997年   18篇
  1996年   12篇
  1995年   8篇
  1994年   14篇
  1993年   10篇
  1992年   4篇
  1991年   16篇
  1990年   9篇
  1989年   11篇
  1988年   11篇
  1987年   5篇
  1985年   9篇
  1984年   14篇
  1983年   8篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   8篇
  1974年   4篇
  1973年   4篇
  1967年   4篇
  1966年   3篇
排序方式: 共有1795条查询结果,搜索用时 15 毫秒
81.
We describe a Xenopus P2Y receptor that shares only weak homology with members of the mammalian P2Y family, being most similar to human P2Y(11). When activated by nucleotide analogs, it stimulates both calcium and cAMP mobilization pathways, a feature unique, among mammalian P2Y receptors, to P2Y(11). Activity can be blocked by compounds known to act as antagonists of mammalian P2Y(11). Genomic synteny between Xenopus and mammals suggests that the novel gene is a true ortholog of P2Y(11). Xenopus P2Y(11) is transcribed during embryonic development, beginning at gastrulation, and is enriched in the developing nervous system.  相似文献   
82.
83.
After stimulation with agonist, G protein coupled receptors (GPCR) undergo conformational changes that allow activation of G proteins to transduce the signal, followed by phosphorylation by kinases and arrestin binding to promote receptor internalization. Actual paradigm, based on a study of GPCR-A/rhodopsin family, suggests that a network of interactions between conserved residues located in transmembrane (TM) domains (mainly TM3, TM6 and TM7) is involved in the molecular switch leading to GPCR activation.

We evaluated in CHO cells expressing the VPAC1 receptor the role of the third transmembrane helix in agonist signalling by point mutation into Ala of the residues highly conserved in the secretin-family of receptors: Y224, N229, F230, W232, E236, G237, Y239, L240. N229A VPAC1 mutant was characterized by a decrease in both potency and efficacy of VIP stimulated adenylate cyclase activity, by the absence of agonist stimulated [Ca2+]i increase, by a preserved receptor recognition of agonists and antagonist and by a preserved sensitivity to GTP suggesting the importance of that residue for efficient G protein activation. N229D mutant was not expressed at the membrane, and the N229Q with a conserved mutation was less affected than the A mutant. Agonist stimulated phosphorylation and internalization of N229A and N229Q VPAC1 were unaffected. However, the re-expression of internalized mutant receptors, but not that of the wild type receptor, was rapidly reversed after VIP washing. Receptor phosphorylation, internalization and re-expression may be thus dissociated from G protein activation and linked to another active conformation that may influence its trafficking.

Mutation of that conserved amino acid in VPAC2 could be investigated only by a conservative mutation (N216Q) and led to a receptor with a low VIP stimulation of adenylate cyclase, receptor phosphorylation and internalization. This indicated the importance of the conserved N residue in the TM3 of that family of receptors.  相似文献   

84.
Synthesis and in vitro cytotoxicity assays of new anthranilamide MDR modulators have been performed to assess their inhibition potency of the P-glycoprotein (P-gp) transporter. The aromatic spacer group between nitrogen atoms (N1 and N2) in the known inhibitor XR9576 was replaced with a flexible alkyl chain of 2 to 6 carbon atoms in length. 6,7-Dimethoxy-1,2,3,4-tetrahydroisoquinoline and their open-chain N-methylhomoveratrylamine counterparts were shown to be potent P-gp inhibitors. The maximal inhibition was obtained when using an ethyl or propyl spacer. Several compounds were more potent than verapamil and intrinsically less cytotoxic than XR9576. In addition, in vitro metabolism studies of 23a with a subset of human CYP-450 isoforms revealed that, unlike XR9576, 23a inhibited CYP3A4, an enzyme that colocalizes with P-gp in the intestine and contributes to tumor cell chemoresistance by enhancing the biodisposition of anticancer drugs such as paclitaxel toward metabolism. In this context, 22a might be a suitable candidate for further drug development.  相似文献   
85.
An efficient protocol has been developed for direct shoot organogenesis from embryo axes derived from mature seeds of two different landraces of Bambara groundnut. Multiple shoots were initiated on several media containing different concentrations and combinations of benzylaminopurine (BAP) or thidiazuron (TDZ). Efficient regeneration occurred when the embryo axes were first plated for 6 days on a medium containing high concentrations of BAP (1 mg/l) and alpha-naphthaleneacetic acid (NAA, 1 mg/l) and then cut transversely and transferred onto a medium containing 1.5 mg/l BAP. Shoot regeneration frequency was 100% and from five to eight shoots per explant were obtained. The importance of using embryo explants and cytokinins in the culture media, with respect to controlling the development of a highly organogenic system, was demonstrated. Histological studies revealed that proliferating buds originated directly from the superficial layers of the explants without an intermediate callus phase. The regenerated shoots were rooted on a medium containing 1 mg/l NAA and then transferred to the greenhouse. Flow cytometric analyses and chloroplast counts of guard cells suggested that the regenerants were diploid. All were morphologically normal and fertile. The short duration, high efficiency and low frequency of somaclonal variation of this system make it well suited for wider biotechnological applications of Bambara groundnut-a neglected and under-utilized crop.  相似文献   
86.
We investigated the status and the regulation of the cyclin-dependent kinases (CDK) inhibitor p27(Kip1) in a choroidal melanoma tumor-derived cell line (OCM-1). By contrast to normal choroidal melanocytes, the expression level of p27(Kip1) was low in these cells and the mitogen-activated protein (MAP) kinase pathway was constitutively activated. Genetic or chemical inhibition of this pathway induced p27(Kip1) accumulation, whereas MAP kinase reactivation triggered a down-regulation of p27(Kip1) that could be partially reversed by calpain inhibitors. In good accordance, ectopic expression of the cellular calpain inhibitor calpastatin led to an increase of endogenous p27(Kip1) expression. In vitro, p27(Kip1) was degraded by calpains, and OCM-1 cell extracts contained a calcium-dependent p27(Kip1) degradation activity. MAP kinase inhibition partially inhibited both calpain activity and calcium-dependent p27(Kip1) degradation by cellular extracts. Immunofluorescence labeling and subcellular fractionation revealed that p27(Kip1) was in part localized in the cytoplasmic compartment of OCM-1 cells but not of melanocytes, and accumulated into the nucleus upon MAP kinase inhibition. MAP kinase activation triggered a cytoplasmic translocation of the protein, as well as a change in its phosphorylation status. This CRM-1-dependent cytoplasmic translocation was necessary for MAP kinase- and calpain-dependent degradation. Taken together, these data suggest that in tumor-derived cells, p27(Kip1) could be degraded by calpains through a MAP kinase-dependent process, and that abnormal cytoplasmic localization of the protein, probably linked to modifications of its phosphorylation state, could be involved in this alternative mechanism of degradation.  相似文献   
87.
A terminal alpha1-3 linked Gal or GalNAc sugar residue is the common structure found in several oligosaccharide antigens, such as blood groups A and B, the xeno-antigen, the Forssman antigen, and the isogloboside 3 (iGb3) glycolipid. The enzymes involved in the addition of this residue display strong amino acid sequence similarities, suggesting a common fold. From a recently solved crystal structure of the bovine alpha3-galactosyltransferase complexed with UDP, homology modeling methods were used to build the four other enzymes of this family in their locked conformation. Nucleotide-sugars, the Mn2+ ion, and oligosaccharide acceptors were docked in the models. Nine different amino acid regions are involved in the substrate binding sites. After geometry optimization of the complexes and analysis of the predicted structures, the basis of the specificities can be rationalized. In the nucleotide-sugar binding site, the specificity between Gal or GalNAc transferase activity is due to the relative size of two clue amino acids. In the acceptor site, the presence of up to three tryptophan residues define the complexity of the oligosaccharide that can be specifically recognized. The modeling study helps in rationalizing the crystallographic data obtained in this family and provides insights on the basis of substrate and donor recognition.  相似文献   
88.
Recent studies have significantly improved our ability to investigate cell transplantation and study the physiology of transplanted cells in cardiac tissue. Several previous studies have shown that fully-immersed heart slices can be used for electrophysiological investigations. Additionally, ischemic heart slices induced by glucose and oxygen deprivation offer a useful tool to investigate mechanical integration and to measure forces of contraction of engrafted cells, at least for short term analysis. A recent and novel model of heart slices, prepared from rat and human tissues, can be maintained in culture for up to two months. This new heart slice model can be used for long term in vitro cell transplantation studies and for pharmacological evaluation. This review will focus on describing these models and demonstrating the use of organotypic heart slices as a novel tool for drugs for studying electrophysiology and developing cellular therapeutic approaches to alleviate cardiac tissue damage.Key words: heart, organotypic, culture, stem cells, transplantation, electrophysiology, pharmacology  相似文献   
89.
Determining the effect of elevated CO(2) on the tolerance of photosynthesis to acute heat stress (AHS) is necessary for predicting plant responses to global warming because photosynthesis is heat sensitive and AHS and atmospheric CO(2) will increase in the future. Few studies have examined this effect, and past results were variable, which may be related to methodological variation among studies. In this study, we grew 11 species that included cool and warm season and C(3), C(4), and CAM species at current or elevated (370 or 700 ppm) CO(2) and at species-specific optimal growth temperatures and at 30°C (if optimal ≠ 30°C). We then assessed thermotolerance of net photosynthesis (P(n)), stomatal conductance (g(st)), leaf internal [CO(2)], and photosystem II (PSII) and post-PSII electron transport during AHS. Thermotolerance of P(n) in elevated (vs. ambient) CO(2) increased in C(3), but decreased in C(4) (especially) and CAM (high growth temperature only), species. In contrast, elevated CO(2) decreased electron transport in 10 of 11 species. High CO(2) decreased g(st) in five of nine species, but stomatal limitations to P(n) increased during AHS in only two cool-season C(3) species. Thus, benefits of elevated CO(2) to photosynthesis at normal temperatures may be partly offset by negative effects during AHS, especially for C(4) species, so effects of elevated CO(2) on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   
90.
In Streptomyces pristinaespiralis, two enzymes are necessary for conversion of pristinamycin IIB (PIIB) to pristinamycin IIA (PIIA), the major component of pristinamycin (D. Thibaut, N. Ratet, D. Bisch, D. Faucher, L. Debussche, and F. Blanche, J. Bacteriol. 177:5199-5205, 1995); these enzymes are PIIA synthase, a heterodimer composed of the SnaA and SnaB proteins, which catalyzes the oxidation of PIIB to PIIA, and the NADH:riboflavin 5'-phosphate oxidoreductase (hereafter called FMN reductase), the SnaC protein, which provides the reduced form of flavin mononucleotide for the reaction. By using oligonucleotide probes designed from limited peptide sequence information of the purified proteins, the corresponding genes were cloned from a genomic library of S. pristinaespiralis. SnaA and SnaB showed no significant similarity with proteins from databases, but SnaA and SnaB had similar protein domains. Disruption of the snaA gene in S. pristinaespiralis led to accumulation of PIIB. Complementation of a S. pristinaespiralis PIIA-PIIB+ mutant with the snaA and snaB genes, cloned in a low-copy-number plasmid, partially restored production of PIIA. The deduced amino acid sequence of the snaC gene showed no similarity to the sequences of other FMN reductases but was 39% identical with the product of the actVB gene of the actinorhodin cluster of Streptomyces coelicolor A(3)2, likely to be involved in the dimerization step of actinorhodin biosynthesis. Furthermore, an S. coelicolor A(3)2 mutant blocked in this step was successfully complemented by the snaC gene, restoring the production of actinorhodin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号