首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1045篇
  免费   99篇
  国内免费   1篇
  1145篇
  2023年   4篇
  2022年   15篇
  2021年   17篇
  2020年   10篇
  2019年   17篇
  2018年   29篇
  2017年   22篇
  2016年   39篇
  2015年   64篇
  2014年   57篇
  2013年   79篇
  2012年   92篇
  2011年   96篇
  2010年   44篇
  2009年   49篇
  2008年   75篇
  2007年   82篇
  2006年   68篇
  2005年   50篇
  2004年   60篇
  2003年   69篇
  2002年   55篇
  2001年   7篇
  2000年   3篇
  1999年   7篇
  1998年   9篇
  1997年   11篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   2篇
排序方式: 共有1145条查询结果,搜索用时 15 毫秒
131.
Gadolinium-based contrast agents are widely used to enhance image contrast in magnetic resonance imaging (MRI) procedures. Over recent years, there has been a renewed interest in the physicochemical properties of gadolinium chelates used as contrast agents for MRI procedures, as it has been suggested that dechelation of these molecules could be involved in the mechanism of a recently described disease, namely nephrogenic systemic fibrosis (NSF). The aim of this paper is to discuss the structure-physicochemical properties relationships of marketed gadolinium chelates in regards to their biological consequences. Marketed gadolinium chelates can be classified according to key molecular design parameters: (a) nature of the chelating moiety: macrocyclic molecules in which Gd3+ is caged in the pre-organized cavity of the ligand, or linear open-chain molecules, (b) ionicity: the ionicity of the complex varies from neutral to tri-anionic agents, and (c) the presence or absence of an aromatic lipophilic residue responsible for protein binding. All these molecular characteristics have a profound impact on the physicochemical characteristics of the pharmaceutical solution such as osmolality, viscosity but also on their efficiency in relaxing water protons (relaxivity) and their biodistribution. These key molecular parameters can also explain why gadolinium chelates differ in terms of their thermodynamic stability constants and kinetic stability, as demonstrated by numerous in vitro and in vivo studies, resulting in various formulations of pharmaceutical solutions of marketed contrast agents. The concept of kinetic and thermodynamic stability is critically discussed as it remains a somewhat controversial topic, especially in predicting the amount of free gadolinium which may result from dechelation of chelates in physiological or pathological situations. A high kinetic stability provided by the macrocyclic structure combined with a high thermodynamic stability (reinforced by ionicity for macrocyclic chelates) will minimize the amount of free gadolinium released in tissue parenchymas.  相似文献   
132.
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.  相似文献   
133.
Free iron in lung can cause the generation of reactive oxygen species, an important factor in chronic obstructive pulmonary disease (COPD) pathogenesis. Iron accumulation has been implicated in oxidative stress in other diseases, such as Alzheimer’s and Parkinson’s diseases, but little is known about iron accumulation in COPD. We sought to determine if iron content and the expression of iron transport and/or storage genes in lung differ between controls and COPD subjects, and whether changes in these correlate with airway obstruction. Explanted lung tissue was obtained from transplant donors, GOLD 2–3 COPD subjects, and GOLD 4 lung transplant recipients, and bronchoalveolar lavage (BAL) cells were obtained from non-smokers, healthy smokers, and GOLD 1–3 COPD subjects. Iron-positive cells were quantified histologically, and the expression of iron uptake (transferrin and transferrin receptor), storage (ferritin) and export (ferroportin) genes was examined by real-time RT-PCR assay. Percentage of iron-positive cells and expression levels of iron metabolism genes were examined for correlations with airflow limitation indices (forced expiratory volume in the first second (FEV1) and the ratio between FEV1 and forced vital capacity (FEV1/FVC)). The alveolar macrophage was identified as the predominant iron-positive cell type in lung tissues. Futhermore, the quantity of iron deposit and the percentage of iron positive macrophages were increased with COPD and emphysema severity. The mRNA expression of iron uptake and storage genes transferrin and ferritin were significantly increased in GOLD 4 COPD lungs compared to donors (6.9 and 3.22 fold increase, respectively). In BAL cells, the mRNA expression of transferrin, transferrin receptor and ferritin correlated with airway obstruction. These results support activation of an iron sequestration mechanism by alveolar macrophages in COPD, which we postulate is a protective mechanism against iron induced oxidative stress.  相似文献   
134.
Apparent competition, through the action of shared natural enemies, is frequently suggested as a possible mechanism underlying the impact of invasive alien species on native species, but examples are rare, particularly in insects. A previous study showed that the beech leaf mining weevil, Orchestes fagi, was significantly less abundant close to horse-chestnut trees infested by the invasive horse-chestnut leaf mining moth, Cameraria ohridella, compared to control sites. Apparent competition through the sharing of natural enemies was proposed as a potential mechanism underlying this effect. To test the occurrence of apparent competition between the two leaf miner species, three observational studies and one experimental manipulation were carried out in Switzerland during 3 years. The total mortality, parasitism, predation and parasitoid diversity of larvae and pupae of O. fagi were compared between sites with and without horse-chestnut trees severely attacked by C. ohridella. Total mortality and predation rates of O. fagi were not significantly different between sites with and sites without C. ohridella. Despite a large overlap between the parasitoid complexes of the two leaf miners, parasitism of O. fagi was found to be positively influenced by the presence of horse-chestnuts infested by C. ohridella in only one of the four studies and only for 1 year. Similarly, parasitoid diversity was not higher near infested horse-chestnut trees compared to control sites. Thus, little evidence for apparent competition was found. Possible reasons, including possible insufficiencies in the experimental circumstances and design, are discussed.  相似文献   
135.
A significantly reduced gonadotropin and testosterone secretion is a well-described result of long-term administration of GnRH agonists in the male dog and cat. To date, no data are available about the duration of efficacy and the reversibility of treatment-induced effects after long-term treatment with a 4.7 mg deslorelin implant. Seven healthy male European Shorthair cats (3.2 ± 0.5 kg, 1–6 years) were treated with a 4.7 mg deslorelin implant. Blood samples (testosterone, T), testicular volume, penile spines, and mating behavior were recorded once weekly. Considering T > 0.5 ng/mL as the biological endpoint, mean duration of efficacy was 78.8 ± 12.9 weeks (range: 61.7–100.7 weeks) with T concentrations increasing rapidly after the last T less than 0.1 ng/mL (basal) (P < 0.0001), and pretreatment T concentrations being reached after 3 weeks. Testicular volume rapidly increased after the first increase of T (P < 0.001) with pretreatment testicular volume being reached after 6.9 ± 3.4 weeks (5–11 weeks). “Normal” libido reoccurred 88.7 ± 12.4 weeks after treatment, and “normal” mating behavior was observed even later. Fertile matings occurred 7 to 42 weeks after the last T less than 0.1 ng/mL with a mean of 4.0 ± 0.0 kittens, and 13.6 to 47.6 weeks afterwards testicular histology revealed normal spermatogenesis. The present data confirm that the use of slow-release GnRH-agonist implants containing deslorelin in tomcats represents an effective and safe reversible alternative for long-term contraception; however, as number of animals is low, further fertility trials are recommended.  相似文献   
136.
A bacterium isolated from microbial mats located on a polynesian atoll produced a high molecular weight (3,000 kDa) and highly sulphated exopolysaccharide. Previous studies showed that the chemical structure of this EPS consisted of neutral sugars, uronic acids, and high proportions of acetate and sulphate groups. The copper- and iron-binding ability of the purified pre-treated native EPS was investigated. Results showed that this EPS had a very high affinity for both copper (9.84 mmol g−1 EPS) and ferrous iron (6.9 mmol g−1 EPS). Amazingly, this EPS did not show any affinity for either ferric ions or selenium salts. This finding is one of the first steps in assessing the biotechnological potential of this polysaccharide.  相似文献   
137.
Synthesis and evaluation of 4-triazolylflavans as new aromatase inhibitors   总被引:1,自引:0,他引:1  
Aromatase is a target of pharmacological interest for the treatment of estrogen-dependent cancers. Azole derivatives such as letrozole or anastrozole have been developed for aromatase inhibition and are used for the treatment of breast tumors. In this paper, four 4-triazolylflavans were synthesized and were found to exhibit moderate to high inhibitory activity against aromatase.  相似文献   
138.
The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies.  相似文献   
139.

Background

Economic impact assessment of invasive species requires integration of information on pest entry, establishment and spread, valuation of assets at risk and market consequences at large spatial scales. Here we develop such a framework and demonstrate its application to the pinewood nematode, Bursaphelenchus xylophilus, which threatens the European forestry industry. The effect of spatial resolution on the assessment result is analysed.

Methodology/Principal Findings

Direct economic impacts resulting from wood loss are computed using partial budgeting at regional scale, while impacts on social welfare are computed by a partial equilibrium analysis of the round wood market at EU scale. Substantial impacts in terms of infested stock are expected in Portugal, Spain, Southern France, and North West Italy but not elsewhere in EU in the near future. The cumulative value of lost forestry stock over a period of 22 years (2008–2030), assuming no regulatory control measures, is estimated at €22 billion. The greatest yearly loss of stock is expected to occur in the period 2014–2019, with a peak of three billion euros in 2016, but stabilizing afterwards at 300–800 million euros/year. The reduction in social welfare follows the loss of stock with considerable delay because the yearly harvest from the forest is only 1.8%. The reduction in social welfare for the downstream round wood market is estimated at €218 million in 2030, whereby consumers incur a welfare loss of €357 million, while producers experience a €139 million increase, due to higher wood prices. The societal impact is expected to extend to well beyond the time horizon of the analysis, and long after the invasion has stopped.

Conclusions/Significance

Pinewood nematode has large economic consequences for the conifer forestry industry in the EU. A change in spatial resolution affected the calculated directed losses by 24%, but did not critically affect conclusions.  相似文献   
140.
The adaptation to chronic hypoxia confers long-lasting cardiac protection against acute ischemia–reperfusion injury. Protein kinase C (PKC) appears to play a role in the cardioprotective mechanism but the involvement of individual PKC isoforms remains unclear. The aim of this study was to examine the effects of chronic intermittent hypoxia (CIH; 7,000 m, 8 h/day) and acute administration of PKC-δ inhibitor (rottlerin, 0.3 mg/kg) on the expression and subcellular distribution of PKC-δ and PKC-ε in the left ventricular myocardium of adult male Wistar rats by Western blot and quantitative immunofluorescence microscopy. CIH decreased the total level of PKC-ε in homogenate without affecting the level of phosphorylated PKC-ε (Ser729). In contrast, CIH up-regulated the total level of PKC-δ as well as the level of phosphorylated PKC-δ (Ser643) in homogenate. Rottlerin partially reversed the hypoxia-induced increase in PKC-δ in the mitochondrial fraction. Immunofluorescent staining of ventricular cryo-sections revealed increased co-localization of PKC-δ with mitochondrial and sarcolemmal membranes in CIH hearts that was suppressed by rottlerin. The formation of nitrotyrosine as a marker of oxidative stress was enhanced in CIH myocardium, particularly in mitochondria. The expression of total oxidative phosphorylation complexes was slightly decreased by CIH mainly due to complex II decline. In conclusion, up-regulated PKC-δ in CIH hearts is mainly localized to mitochondrial and sarcolemmal membranes. The inhibitory effects of rottlerin on PKC-δ subcellular redistribution and cardioprotection (as shown previously) support the view that this isoform plays a role in the mechanism of CIH-induced ischemic tolerance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号