首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   140篇
  2023年   4篇
  2022年   11篇
  2021年   15篇
  2020年   10篇
  2019年   17篇
  2018年   29篇
  2017年   23篇
  2016年   38篇
  2015年   64篇
  2014年   60篇
  2013年   79篇
  2012年   95篇
  2011年   101篇
  2010年   48篇
  2009年   50篇
  2008年   78篇
  2007年   86篇
  2006年   69篇
  2005年   50篇
  2004年   60篇
  2003年   69篇
  2002年   55篇
  2001年   8篇
  2000年   5篇
  1999年   7篇
  1998年   11篇
  1997年   12篇
  1996年   5篇
  1995年   4篇
  1994年   7篇
  1993年   2篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1972年   1篇
  1971年   3篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
  1966年   5篇
  1965年   1篇
排序方式: 共有1227条查询结果,搜索用时 31 毫秒
111.
Internalization and intracellular trafficking of the growth hormone-releasing hormone receptor (GHRH-R) were studied in rat anterior pituitary and human (h) and rat (r) GHRH-R-transfected BHK cells, with the GHRH agonist, [N(alpha)-5-carboxyfluoresceinyl-D-Ala(2), Ala(8), Ala(15), Lys(22)]hGHRH(1-29)NH(2) (Fluo-GHRH). Time- and temperature-dependent internalization of stimulated GHRH-R was blocked by phenyl arsine oxide (PAO) in both cell types. In anterior pituitary and rGHRH-R-transfected BHK cells, only filipin III and cerulenin blocked receptor-mediated internalization of Fluo-GHRH while in hGHRH-R-transfected BHK cells, only hyperosmolar sucrose inhibited this process. These results suggest that hGHRH-R internalization is clathrin-dependent, while fatty acid acylation of rGHRH-R appears to be a prerequisite to caveolin-dependent internalization. Experiments in anterior pituitary using Bodipy-FL-C(5) ganglioside GM1, a specific marker of lipid rafts such as caveolae, confirmed this latter pathway. Co-localization of Fluo-GHRH with LysoTracker indicated that Fluo-GHRH was directed to acidic organelles in both cell types. Finally, studies using cycloheximide and monensin showed that upon stimulation with GHRH, an optimal concentration of functional GHRH-R was maintained at the plasma membrane due to de novo synthesis and recycling in pituitary cells and to de novo synthesis solely in hGHRH-R-transfected BHK cells. This first study on the dynamics of the GHRH/GHRH-R complexes using fluorescence imaging in a native environment compared to cell system models, revealed that both receptor primary structure and concentration at the plasma membrane play important roles in internalization and trafficking of specific G-protein-coupled receptors (GPCR).  相似文献   
112.
Microsatellite loci are usually considered to be neutral co-dominant and Mendelian markers. We undertook to study the inheritance of five microsatellite loci in the European Lyme disease vector, the tick Ixodes ricinus. Only two loci appeared fully Mendelian while the three others displayed non-Mendelian patterns that highly frequent null alleles could not fully explain. At one locus, IR27, some phenomenon seems to hinder the PCR amplification of one allele, depending on its origin (maternal imprinting) and/or its size (short allele dominance). DNA methylation, which appeared to be a possible explanation of this amplification bias, was rejected by a specific test comparing the amplification efficiency that did not differ between unmethylated and experimentally methylated DNA. The role of allele size in heterozygous individuals was then revealed from the data available on field collected ticks and consistent with the results of a theoretical approach. These observations highlight the need for prudence while inferring reproductive systems (selfing rates), parentage or even allelic frequencies from microsatellite markers, in particular for parasitic organisms for which molecular approaches often represent the only way for population biology inferences.  相似文献   
113.
Double-stranded DNA is a therapeutic target for a variety of anticancer and antimicrobial drugs. Noncovalent interactions of small molecules with DNA usually occur via intercalation of planar compounds between adjacent base pairs or minor-groove recognition by extended crescent-shaped ligands. However, the dynamic and flexibility of the DNA platform provide a variety of conformations that can be targeted by structurally diverse compounds. Here, we propose a novel DNA-binding template for construction of new therapeutic candidates. Four bisphenylcarbazole derivatives, derived from the combined molecular architectures of known antitumor bisphenylbenzimidazoles and anti-infectious dicationic carbazoles, have been designed, and their interaction with DNA has been studied by a combination of biochemical and biophysical methods. The substitutions of the bisphenylcarbazole core with two terminal dimethylaminoalkoxy side chains strongly promote the interaction with DNA, to prevent the heat denaturation of the double helix. The deletion or the replacement of the dimethylamino-terminal groups with hydroxyl groups strongly decreased DNA interaction, and the addition of a third cationic side chain on the carbazole nitrogen reinforced the affinity of the compound for DNA. Although the bi- and tridentate molecules both derive from well-characterized DNA minor-groove binders, the analysis of their binding mode by means of circular and linear dichroism methods suggests that these compounds form intercalation complexes with DNA. Negative-reduced dichroism signals were recorded in the presence of natural DNA and synthetic AT and GC polynucleotides. The intercalation hypothesis was validated by unwinding experiments using topoisomerase I. Prominent gel shifts were observed with the di- and trisubstituted bisphenylcarbazoles but not with the uncharged analogues. These observations, together with the documented stacking properties of such molecules (components for liquid crystals), prompted us to investigate their binding to the human telomeric DNA sequence by means of biosensor surface plasmon resonance. Under conditions favorable to G4 formation, the title compounds showed only a modest interaction with the telomeric quadruplex sequence, comparable to that measured with a double-stranded oligonucleotide. Their sequence preference was explored by DNase I footprinting experiments from which we identified a composite set of binding sequences comprising short AT stretches and a few other mixed AT/GC blocks with no special AT character. The variety of the binding sequences possibly reflects the coexistence of distinct positioning of the chromophore in the intercalation sites. The bisphenylcarbazole unit represents an original pharmacophore for DNA recognition. Its branched structure, with two or three arms suitable to introduce a structural diversity, provides an interesting scaffold to built molecules susceptible to discriminate between the different conformations of nucleic acids.  相似文献   
114.
Primary leaf metabolism requires the co-ordinated production and use of carbon skeletons and redox equivalents in several subcellular compartments. The role of the mitochondria in leaf metabolism has long been recognized, but it is only recently that molecular tools and mutants have become available to evaluate cause-and-effect relationships. In particular, analysis of the CMSII mutant of Nicotiana sylvestris, which lacks functional complex I, has provided information on the role of mitochondrial electron transport in leaf function. The essential feature of CMSII is the absence of a major NADH sink, i.e. complex I. This necessitates re-adjustment of whole-cell redox homeostasis, gene expression, and also influences metabolic pathways that use pyridine nucleotides. In air, CMSII is not able to use its photosynthetic capacity as well as the wild type. The mutant shows up-regulation of the leaf antioxidant system, lower leaf contents of reactive oxygen species, and enhanced stress resistance. Lastly, the loss of a major mitochondrial dehydrogenase has important repercussions for the integration of primary carbon and nitrogen metabolism, causing distinct changes in leaf organic acid profiles, and also affecting downstream processes such as the biosynthesis of the spectrum of leaf amino acids.  相似文献   
115.
Objective: To examine cellular and biochemical features of skeletal muscle in response to dietary‐induced obesity in a novel Yucatan minipig model of childhood obesity. Research Methods and Procedures: From 4 to 16 months of age, minipigs were fed either a recommended human‐type diet (NF; n = 4) or were overfed a western‐type diet with saturated fat and high‐glycemic index carbohydrates (OF, n = 4). Muscle samples (biceps femoris) were histochemically stained for the identification of intramuscular adipocytes, intramyocellular lipid aggregates (oil red O), and myofiber types (myosin ATPase, succinate dehydrogenase). Gene expressions and/or activities of factors involved in lipogenesis, lipolysis, or energetic metabolism were quantified in muscle. Results: Cross‐sectional areas of myofibers paralleled pig body weight (r = 0.86, p < 0.01). The size of intramuscular adipocytes, the relative proportion of oil red O‐stained fibers, and total muscle lipid content tended (p ≤ 0.10) to increase in response to OF diet. Hormone‐sensitive lipase, carnitine palmityl transferase‐I, and uncoupling protein 2 mRNA levels were lower (p < 0.05) in OF pigs than in NF pigs. Activities of β‐hydroxyacyl‐coenzyme A dehydrogenase and citrate synthase assessing post‐carnitine palmityl transferase I events and the proportion of oxidative myofibers were not altered by OF diet. Activity and gene expression of fatty acid synthase were lower (p < 0.02) in OF pigs than in NF pigs. Discussion: Overfeeding in Yucatan minipigs reduced the expression levels of three catabolic steps in skeletal muscle that are involved also in the etiology of human obesity.  相似文献   
116.
The Rab family of GTPases are regulators of eukaryotic vesicular membrane traffic, while modulation of actin dynamics is a function conventionally associated with the Rho family of GTPases. Rab35 is a Rab protein with both plasma membrane and endosomal localization, and has been implicated in diverse processes that include T-cell receptor recycling, oocyte yolk protein recycling and cytokinesis. Rab35 regulates neurite outgrowth in neuronal-like cells, and can induce protrusions even in typically non-adherent Jurkat T-cells. Recent evidence indicates that Rab35’s activity, particularly the ability to mediate protrusive outgrowths, is due to its direct influence on actin dynamics. This can occur via activation of the Rho family of GTPases, or through the engagement of its effector fascin, an actin bundling protein.  相似文献   
117.
Aortic smooth muscle cell release of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been implicated in aortic aneurysm pathogenesis, but proximal modulation of release is poorly understood. Extracellular nucleotides regulate vascular smooth muscle cell metabolism in response to physiochemical stresses, but nucleotide modulation of MMP and/or TIMP release has not been reported. We hypothesized that nucleotides modulate MMP-2 and TIMP-2 release from human aortic smooth muscle cells (HASMCs) via distinct purinergic receptors and signaling pathways. We exposed HASMCs to exogenous ATP and other nucleotides with and without interleukin-1beta (IL-1beta). HASMCs were pretreated in some experiments with apyrase, which degrades ATP, and inhibitors of ERK1/2, JNK, and p38 MAPK. MMP-2 and TIMP-2 released into supernatant were assessed using ELISA and Western blotting. ATP, adenosine, and UTP significantly stimulated MMP-2 release in the presence of IL-1beta (300 nM ATP: 181 +/- 22%, P = 0.003; 30 microm adenosine: 244 +/- 150%, P = 0.001; and 200 microm UTP: 153 +/- 40%, P = 0.015; vs. 100% constitutive). ATP also stimulated MMP-2 release in the absence of IL-1beta (100 microm ATP: 148 +/- 38% vs. 100% constitutive). Apyrase significantly reduced ATP-stimulated MMP-2 release (apyrase + 500 nM ATP: 59 +/- 3% vs. 124 +/- 7% with 500 nM ATP). Rank-order agonist potency for MMP-2 release was consistent with ATP activation of PAY and PAY receptors. ATP induced phosphorylation of intracellular JNK, and inhibition of the JNK pathway blocked ATP-stimulated MMP-2 release, indicating signaling via this pathway. Nucleotides are thus novel stimulants of MMP-2 release from HASMCs and may provide a mechanistic link between physiochemical stress in the aorta and aneurysms, especially in the context of inflammation.  相似文献   
118.
After stimulation with agonist, G protein coupled receptors (GPCR) undergo conformational changes that allow activation of G proteins to transduce the signal, followed by phosphorylation by kinases and arrestin binding to promote receptor internalization. Actual paradigm, based on a study of GPCR-A/rhodopsin family, suggests that a network of interactions between conserved residues located in transmembrane (TM) domains (mainly TM3, TM6 and TM7) is involved in the molecular switch leading to GPCR activation.

We evaluated in CHO cells expressing the VPAC1 receptor the role of the third transmembrane helix in agonist signalling by point mutation into Ala of the residues highly conserved in the secretin-family of receptors: Y224, N229, F230, W232, E236, G237, Y239, L240. N229A VPAC1 mutant was characterized by a decrease in both potency and efficacy of VIP stimulated adenylate cyclase activity, by the absence of agonist stimulated [Ca2+]i increase, by a preserved receptor recognition of agonists and antagonist and by a preserved sensitivity to GTP suggesting the importance of that residue for efficient G protein activation. N229D mutant was not expressed at the membrane, and the N229Q with a conserved mutation was less affected than the A mutant. Agonist stimulated phosphorylation and internalization of N229A and N229Q VPAC1 were unaffected. However, the re-expression of internalized mutant receptors, but not that of the wild type receptor, was rapidly reversed after VIP washing. Receptor phosphorylation, internalization and re-expression may be thus dissociated from G protein activation and linked to another active conformation that may influence its trafficking.

Mutation of that conserved amino acid in VPAC2 could be investigated only by a conservative mutation (N216Q) and led to a receptor with a low VIP stimulation of adenylate cyclase, receptor phosphorylation and internalization. This indicated the importance of the conserved N residue in the TM3 of that family of receptors.  相似文献   

119.
BACKGROUND: Chronic hepatitis C infection is frequently associated with a mixed cryoglobulinaemia and circulating auto-antibodies, especially anti-smooth muscle cells (SMA) and anti-liver/kidney/microsome type 1 (LKM-1) anti-tissue antibodies. Treatments with TNF antagonists favour the emergence of auto-antibodies, and particularly anti-dsDNA antibodies. OBJECTIVE: To determine the impact of TNF antagonists on hepatitis C-related immune abnormalities. METHODS: We prospectively monitored for 14 weeks, six patients with actively replicating chronic hepatitis C, initiating an anti-TNF treatment for an associated rheumatoid arthritis. RESULTS: Anti-nuclear and anti-dsDNA antibodies were induced in two and three patients, respectively. Treatment had no impact on the production of antibodies against extractable nuclear antigens, and it did not induce anti-tissues antibodies in any patient. Cryoglobulinaemia appeared in 2/6 patients, and it persisted in 2 others. No patient developed any news signs of autoimmunity. HCV viraemia remained unchanged. CONCLUSIONS: Induction of auto-antibodies by TNF antagonist treatments does not involve anti-tissues antibodies, even in patients with actively replicating chronic hepatitis C prone to produce anti-SMA and anti-LKM-1 antibodies. In contrast, TNF antagonists may favour emergence of cryoglobulinaemia in such patients.  相似文献   
120.
Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号